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A fast addition algorithm for divisor classes of genus two hyperelliptic curves over finite fields
of odd characteristics was proposed by Harley in 2000 and a lot of improvements of the algo-
rithm has been proposed, besides extensions of the algorithm for the curves over finite fields of
characteristic two have been proposed by the authors and Lange independently. However, any
Harley algorithm over arbitrary characteristic fields have not been known until now. This paper
shows a generalization of the Harley algorithm to genus two hyper elliptic curves over finite
fields of arbitrary characteristics. The proposed algorithm takes 1+26M, [+31M for an addition
and a doubling respectively, where | and M denote the cost for an inversion and a multiplication

over the definition field respectively.
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1 Infroduction

In order to realize secure electronic com-
merce within public digital communication
infrastructures such as the Internet, informa-
tion security techniques are indispensable,
covering areas from secret communications to
personal privacy protection to authentication.
Among these technmques, public key cryptog-
raphy 1s an essential basic technology. This
core technology supports a range of societal
structures, such as electronic payment sys-
tems, electronic government, and advanced
healthcare.

The best public key cryptography current-
ly available is the elliptic curve cryptosystem.
However, the elliptic curves themselves used
in this method form only a small class of all
algebraic curves. Thus in order to construct a
more efficient public key cryptosystem, many
resecarches have recently been conducted on
cryptosystems using the discrete logarithm
problems on hyperelliptic curves, a more gen-

eral class of algebraic curves.

A fast group operation (addition) algo-
rithm is indispensable when constructing a
cryptosystem based on the discrete logarithm
problem with elliptic curves and hyperelliptic
curves. For elliptic curves, many practical
algorithms have long been used. However, no
efficient algorithms were available for hyper-
elliptic curves. Recently, Cantor[1] proposed a
fast addition algorithm (the Cantor algorithm)
for divisor classes of hyperelliptic curves. This
algorithm has enabled use of hyperelliptic
curves in the construction of practical cryp-
tosystems. However, the hyperelliptic curve
cryptosystems based on the Cantor algorithm
are at least several times slower than elliptic
curve cryptosystems.

In 2000, Harley(21[3] proposed a fast addi-
tion algorithm on genus two hyperelliptic
curves (the Harley algorithm) based on a
method different from that used in the Cantor
algorithm. Unlike the Cantor algorithm, the
Harley algorithm limits itself to genus two
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hyperelliptic curves over odd-characteristic
fields. Similar to the Cantor algorithm, the
Harley algorithm uses Mumford's representa-
tion to represent the input and output divisor
classes, but it uses a method similar to the
chord-tangent law for elliptic curves, instead
of using the binary quadratic form computa-
tion of polynomials applied in the Cantor
algorithm. The Harley algorithm also uses the
Karatsuba multiplication, as well as Chinese
reminder theorem and the Newton iteration, 1n
the computation procedure, to obtain an algo-
rithm that 1s faster than the Cantor algorithm.
Consequently, 1t has been shown that the
hyperelliptic curve cryptosystems based on the
Harley algorithm can theoretically match the
speed of elliptic curve cryptosystems[4]. Since
then, the Harley algorithm has been the sub-
ject of extensive study . Specifically, Refer-
ences[8] and(g] present extended algorithms
developed from the Harley algorithm for
hyperelliptic curves over fields of characteris-
tic 2. As such, the Harley algorithm has been
subject to separate study for odd-characteristic
definition fields and for even-characteristic
definition fields. Nevertheless, 1t 1s important
to construct a general algorithm for hyperel-
liptic curves over finite fields of arbitrary
characteristics in order to improve the
research and our understanding of addition
algorithm. The general algorithm is also useful
for practical implementation in symbolic com-
putation software.

Therefore, this paper shows a Harley algo-
rithm that does not depend on the characteris-
tics of the definition field. The proposed algo-
rithm enables addition and doubling for divi-
sor classes of genus two hyperelliptic curves
over the finite field F,; of an arbitrary charac-
teristic at the computational cost of /+26M
and [+31M, respectively. Here, / and M denote
the cost for inversion and multiplication over
F,, respectively.

*1 For the latest research relating to the Harley
algorithm, see[5][6], and[7], for example. All the divi-
sors D of C obviously form a commutative group.

2 Preliminaries

2.1 Hyperelliptic curves

Let F; be a finite field with g elements. A
genus two hyperelliptic curve C over Ky 18
defined as follows:

C : Y 4+ H(X)Y =F(X),
H(X)=X%4+hX + ho, (1)
FX)=X+f1X44+.- -+ X + fo.

Condition
(x,y) € Fqg such that y* + H(z)y + F(z) =0

Let us define points on C as the pair (x, y)
that satisfies the above condition together with
the only point at infinity, P=. For point P = (x,
yv)* P~ on C, (x, -y - H(x)) is another point on
C. Here, this point is represented as -P. Also,
-P= = P~ holds. A P such that P = -P 1s called
a ramification point. For a ramification point
P = (x, y) other than P-,

2 + H(z) =0 (2)

holds. A ramification point on C is either a
point (x, y) on C that satisfies (2), or Pe.

2.2 Divisors of hyperelliptic curves and
the Jacobian variety
Let us define the divisor D on C as the fol-
lowing finite formal sum of points Pi on C.

e n; Py, n; € 2.
2 ®)
Let us define the degree of the divisor D

given by (3) as

deg D = Zn; :

The set D" consisting of all divisors of
degree O forms a group.

Let us define the divisor ( f) of a rational
function fon C as

(f) =) mpPi— mq,Q;.

Here, Piis a zero of multiplicity me, of fon
C, and Q; 1s a pole of multiplicity me, The
divisor ( f) 1s called a principal divisor. Let us
denote the set of all principal divisors as D'. D'
is known to form a subgroup of D".

The Jacobian variety Je of C is defined as
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follows:
Jo = DY/D

Let us denote the set of divisor classes of
J: fixed by a g-th power Frobenius map as
J:(Fy). J:(Fy) forms a finite commutative
group. As the discrete logarithm problem can
be defined for this group, a cryptosystem can
be constructed on the group. This cryptosys-
tem is called a hyperelliptic curve cryptosys-
tem. To construct a fast hyperelliptic curve
cryptosystem, a fast addition algorithm is
needed for the divisor classes of J:(Fy). Thus,
this paper investigates addition for the divisor
classes of J:(F,).

2.3 Divisor classes and their expres-
sions

For D1 and D: that satisfy D1, D2€ Do, if
Di - DD’ is true, D1 and D: are said to be
linearly equivalent and represented by D1~
D>,

Any divisor classes of J. can be represent-
ed by divisors of the following form.

i E— Zt_miﬂ- — (Zt_mi) P g 20

Here, Pi+-P;1s assumed to hold for i #j.

A divisor in the form of (4) is called a
semi-reduced divisor. Specifically, a semi-
reduced divisor that satisfies >;m: <g called a
reduced divisor. Reduced divisors can unique-
ly represent the divisor classes of J..

Using polynomials U, VeFy[X], a semi-
reduced divisor D given by the form of (4) can
be represented as

D=(UV). (5)

Here, denoting Pi = (xi, yi),

U=][(X-z)™ ©)

and V is the only polynomial that satisfies

F—-HV-V? = 0modU,
degV < degl, (7)
i = V{Ii] .

This representation of a semi-reduced divi-
sor 1s called Mumford's representation.
For D = (U, V), U, VeF,[X] is equivalent

to D€ J:(Fy), so that in the following discus-
sion we assume U, Ve F4[X].

When a divisor class D of J«(Fy) 1s repre-
sented by Mumford's representation, its
inverse -D is easily determined. Specifically,
forD = (U, V) (deg U =2),

-D=(U,U-V - H) (8)

holds. Specifically, when D = P, + P/ -
2P for ramification points P, and Pr,

-D=D
also holds. For D = (X + uo, vo) (deg U = 1),

—D = (X + uo, —vo — H(uo))

holds.

3 Generalization of the Harley
algorithm

This section proposes a Harley algorithm
for genus two hyperelliptic curves on F; given
by (1). Similar to the Harley algorithm over
odd-characteristic fields, the proposed algo-
rithm uses different procedures for addition
and for doubling. It also uses reduced divisors
for input and output.

This section is organized as follows: Sec-
tion 3.1 describes the classification of the
input divisors. Section 3.2 discusses the
details of the addition algorithm. Section 3.3
discusses the details of the doubling algo-
rithm.

In the following, lower-case characters
denote elements of F4 and upper-case charac-
ters denote polynomials of X over F,.

3.1 Classification of input divisors

This section shows the necessary condi-
tions for the input divisors of the proposed
algorithm and the method used to classify the
input divisors.

In the addition D3 = (Us, Vi) = D1 + D2 of
reduced divisors D1 = (U, Vi)and D2 = (U», V2),

degl/; =degls =degl/y = 2,
ged(Uy,Uz) =1

almost always holds for Fy sufficiently
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large (for example, 80 bits) for use in cryp-
tosystems.

Thus, the input divisors are first classified
according to whether or not this condition is
satisfied. Specifically, the input divisors are
first classified by the degrees of Ui and Ua,
and then the resultant of U1 and U2 is used to
classify the input divisors with

res(Uy, Us) # 0 < ged(U,,Uz) =1 (9)

Section 3.2 describes the computation
procedure for the case in which the input and
output divisors satisfy the above conditions.

In the doubling D2 = (U2, V2) = 2D of
reduced divisors D1 = (U1, V1),

deg /1 = deglU; = 2,
ged(Uh,2V1 + H) =1

almost always holds for Fy; sufficiently
large for use in cryptosystems. The procedure
is similar to the addition procedure: the input
divisors are classified first by the degrees of
U1 and U», then the resultant of U1 and 2V +
H 1s used to classify the input divisors with

res(Uy,2Vy + H) #0 & ged(Uy,2Vi+ H) =1, (10)

Section 3.3 describes the computation
procedure for the case in which the input and
output divisors satisfy the above conditions.

When the input divisors for addition/dou-
bling do not satisfy the above conditions, the pro-
cedures described in Sections 3.2 and 3.3 cannot
be applied. In such a case, further detailed classi-
fication 1s performed and a different procedure is
used for each class. In practical terms, the classi-
fication procedures for addition are the same as
those presented in [3], and the classification pro-
cedures for doubling are the same as those pre-
sented in(8]. The procedures themselves can be
obtained easily by modifying the procedures
described in (3] for addition and (8] for doubling
according to Sections 3.2 and 3.3.

3.2 Addition algorithm

This section shows the computation proce-
dure of the addition D3 = D1 + D2 = (U3, V)
for reduced divisors D1 = (Ui, Vi) and D2 =
(U2, V2) withdeg U1 =deg U2 =2 and ged(U1,

i) =1.

Similar to the Harley algorithm over odd-
characteristic fields, the Harley algorithm for
genus two hyperelliptic curves over F; of arbi-
trary characteristics consists of a composition
part and a reduction part.

First, the composition part establishes D
and Da. Specifically, it computes the semi-
reduced divisor, D = (U, V) which is linearly
equivalent to -Ds and satisfies

U= U1U2+

V 1s obtained from

V = V] modU,
V = VomodUs

using Chinese reminder theorem as

V = SUi+W,

11
S = Voa—V)U'modUs, degS<1. oL

Next, the reduction part computes the
reduced divisor D's = (U3, V'3) for which D's~
D holds. U's 1s a quadratic polynomial whose
roots are the X coordinates of two among the
six cross points (including multiplicity) of C
and V, which are not the roots of U. Specifi-
cally, using the procedures shown in (4] and
(101, we arrive at the following calculation:

5 P HV 2
vt = s-2F HU 14

(12)

(Probability of s1 = 0 is very small for Fy
values sufficiently large for use in cryptosys-
tems. However, if this does occur, another
algorithm 1s required. This alternate algorithm
is easily obtained by briefly modifying the
procedures shown in (8], and thus is omitted
here. The output divisor D3 = (Us, V3) in this
case, satisfies deg Uz = 1.) V'3 is the only
polynomial that satisfies (7) for U's. Specifi-
cally, this polynomial is calculated from

Vi =V mod Uy
and (11) as
VE:I . S{U:; - Ul] a Sl{“!}_l e uu}Ué +V:.

Finally, the output divisor is obtained from
(8) as
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i[=/e) =008 Addition algorithm

Input | A genus 2 hyperelliptic curve C : Y* + H(X)Y = F(X),
Reduced divisors D) = (U, V1) and Dy = (Ua, V3)
such that ged(U;,U2) = 1 and deglU; = degUz = 2

Output | The reduced divisor D3 = (Us, V3) = D, + D2 such that deg Dz = 2

Step Procedure Cost

1 Compute the resultant r of U; and Us. 4M
Wy — Uyo — U2o; 21 « U1l — U21; Tg «— U211 — W4} T +— H::::Ji% — Watlo;

2 If r = 0 then call the other procedure. —

3 Compute I = i1 X +io = r(U1)” " mod Us. -

4 Compute T =1 X 4+ tp = I(Va — V1) mod Us. S5M

o

Wo + V20 — V10; W1 + V21 — V11; 2 +— wht1; Lo +— Wolo;
t1 — (wo + wi)(21 + 20) — to — ta(u21 + 1); to «— to — t2u20;
If t; = 0 then call the other procedure.

6 Compute S = 51X + so.

wo « (rt1)”"; wy — wor; w2 — wot1; w3 — wiT; 81 — wati; So — walo;
rd Compute Us = X +u3 X + uz = S?z{(SU] -+ V]jz -+ H{SU;{ + Vl) — F}f(Ulﬂz), 6M

+{2w1 — U9 )il + wy

wo — W3; w1 — Sows; uz1 — 41 — Wo + 2wy + wa;
2
u3o — (35 + so + w1 + u21 — fa)wo — (w21 — 2v11 — hi)ws

8 Compute Vi = v3: X + vso0. oM
w1 + U11 — U31y Wo +— U10 — U30, W2 + S1W1, W3 +— SoWo;
wq +— (81 + 80)(w1 + wo) — w2 — ws;
va1 «— uz1(h2 + w2) — wq — v11 — ha1; vzo — uzo(h2 + w2) — wz — vio — ho;
Total I+ 26M

D3 = (U3, V3) = (U3, Uz — V3 — H)

The detail follows 41181, and [10], and the
operations on the definition field are opti-
mized. Specifically, (11) is not calculated but
substituted in (12) to obtain a polynomial
whose coefficients are efficiently combined to
reduce the number of operations. The Karatsu-
ba multiplication is also used to reduce the
number of multiplication operations over the
defimtion field. Further, similar to[8] and[10],
the Montgomery multiple inversion technique
i1s used. This technique converts two inver-
sions in the algorithm into four multiplications
and one inversion to reduce the number of
inversions.

Consequently, an algorithm is obtained
that can be used to calculate D3 = D1 + D2
with a computational cost of / + 26M.

Table 1 shows the details of the addition
algorithm described here and the computation-
al cost for each step.

3.3 Doubling algorithm

This section shows the computation proce-

dure of the doubling D2 = (U2, V2) = 2D for
reduced divisors D1 = (Ui, Vi) that satisfy
deg Ur =2 and ged(U1, 2Vi+ H) = 1.

Similar to the addition algorithm, the dou-
bling algorithm consists of a composition part
and a reduction part.

First, the composition part computes the
semi-reduced divisor D = (U, V) which is
equivalent to -D2 and satisfies

SRR L

V 1s obtained from

V =V, mod Uy

using the Newton iteration as

vV = S+,
- HV, - V2
5 = ¥ HUI L(2Vi + H) ' mod Uy, degS < 1.
1

Next, the reduction part computes the out-
put divisor D2 = (U2, V2) from D following the
same procedure used in the addition, obtaining

- _ 172
Uy = SI_EF H;: V.

Vo = Uslho —si(uay —un)) —SUz-U) -V, - H.

Similar to the addition process, the proce-
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ils o) - 14 Doubling algorithm

Input | A genus 2 hyperelliptic curve C : Y* + H(X)Y = F(X),
A reduced divisor Dy = (U;, V1) such that ged(Uy,2Vi + H) = 1 and deglU; = 2
Output | The reduced divisor D; = (U3, V2) = 2D; such that degU; = 2
Step Procedure Cost
1 Compute the resultant r of U/; and 2V, + H. 4M
wo — 2v10 + ho; w1 «— 2vi1 + Ry 41— wil — wa; to — w1171 — 10 + Wo;
r «— towo + w010 — wo — t1w)
2 If » = 0 then call the other procedure. —
3 Compute I =41 X +ip = r(2V1 + H) ™' mod U,. —
4 Compute T =t; X + to = I(F — HV; — V{¥)/U; mod Uy;. 12M
U e e ‘-!-311(-‘11 + 1’11]; w1+ 2uio0fa;
wg — u11(6uio + 2v11 — 2f3 + u11(3f1 — 4u11)) + f2 — vio — wo — un;
wa — u11(3u1r — 2f4) — vi1 — 2ui0 + f3; 1 — Lyw2 + tows; w2 — upws;
w3 +— fa — wp — w1 — vio + w11{vi1 — fz + 4duio + w11 (fa — un)); to « tows — i1wy;
5 If t; = 0 then call the other procedure. —
6 Compute S = 51X + so0. I +6M
wo — (rt1) ™" w1 — wor; we «— woty; w3 — wrT; 81 — wat1; So — walo;

T Cnmpute U = X2 4w X 4+ usp = SIE{(SU1 +- Vl}g + H(SU1 + VI} — F}KUE A4M

w21 — wz(2s0 + 1 — ws); uzo +— wa(ws(2u11 — fa + so(so + 1)) — w11 + 2vi1 + h1);

8 Compute V2 = v21.X + va20. 5M
wy < Uy — U1, Wy +— U0 — U0, W2 + 51w, W3 +— SpWo,
wy +— (81 + so)(w1 + wo) — w2 — ws;
Tva1 «— Hzl[l -+ wz) — wq — U1 — h1; v — qu(l i wz] — w3 — o — ho;
Total I +31M

dures shown 1n [4][8], and [10] are used 1n
actual calculation to reduce the number of
operations over the definition field.

Consequently, an algorithm is obtained
enabling calculation of D2 = 2D with a com-
putational cost of / + 31 M.

Table 2 shows the details of the doubling
algorithm described here and the computation-
al cost for each step.

4 Conclusions

In order to improve the research and our
understanding of addition algorithm for hyper-
elliptic curves, this paper extends the Harley
algorithm for hyperelliptic curves over finite
field Ky of arbitrary characteristic. The pro-
posed algorithm can execute addition and dou-
bling, for the divisor classes of genus two
hyperelliptic curves over F,, at a computation-
al cost of I + 26M and I + 31M, respectively,
offering sufficient efficiency for implementa-
tion within symbolic computation software.
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