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Abstract Fast addition algorithm for divisor classes of hyperelliptic curves is of essentially importance for con-
struction of hyperelliptic curve cryptosystems. Recently, a fast addition algorithm for divisor class groups of genus
two hyperelliptic curves was prbposed by Harley. The algorithm is designed only for curves over finite fields of odd
characteristic. ‘
In this paper, we present an extension of Harley’s algorithm to curves over finite fields of even characteristic. The
proposed algorithm takes I +25M for an addition and I + 27M for a doubling, where I and M denote costs for an
inversion and a multiplication over the definition finite field respectively.
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1. Introduction

It is known that implementation of practical hy-
perelliptic curve cryptosystems became possible
only when the fast addition algorithm for divi-
sor class groups of hyperelliptic curves by Can-
tor in[1] was available [7]. Since then improvement
of the Cantor algorithm has been a central theme
in researches of hyperelliptic curve cryptosystems
[7], [12]~[15], aiming to build faster hyperelliptic
cryptosystems, e.g. comparable with the elliptic
curve cryptosystems. Besides, the original Cantor
algorithm was proposed for curves defined over fi-
nite fields of odd characteristic. It is extended by
Koblitz to curves over finite fields of even charac-
teristic or over Fon [7].

Recently, a novel addition algorithm based on
a totally different strategy from the Cantor algo-
rithm was proposed by Harley [4]~[6] for divisor
class groups of

Y2= X%+ fuX*+ fsX3 4+ fo (1)

over F, of odd characteristic. Hereafter, we will call
it the Harley algorithm.

The Harley algorithm is a generalization of the
chord-tangent law of elliptic curves to divisor addi-
tion of hyperelliptic curves. The other features of
the algorithm include adoption of Mumford’s repre-
sentation for representation of divisors, usage of the
Chinese remainder theorem, Newton’s iteration and
the Karatsuba multiplication over finite fields. As
a result, the Harley algorithm reduces the compu-
tation cost significantly comparing with the Cantor
algorithm and its improvements as well. In fact, the
improved versions of the Harley algorithm shown
in [9], [10], [16] take I + 25M for an addition and
I+29M (or I +27M, if f4 = 0) for a doubling,
where I, M denote the costs of an inversion and
a multiplication over definition fields respectively.
Moreover, as reported in [9] that with the improved
Harley algorithm, it is possible to implement hyper-
elliptic curve cryptosystems with the same encryp-
tion rate as the elliptic curve cryptosystems.

In this paper, we show an extension of the Harley
algorithm to curves over finite fields of characteris-
tic two. The proposed algorithm takes I 4 25M for
an addition and I 4+ 27M for a doubling.

2. Preliminaries

2.1 Hyperelliptic curves and their Jaco-

bian varieties
Let n be a positive integer. A genus 2 hyperellip-
tic curve C over Fon is defined as follows:

C: Y2+ H(X)Y = F(X), (2)
H(X) = hy X%+ h1 X + hg,
F(X)=X°+ faX*+--- + fo,

where h;, f; € Fon, and

{(z,y) € Fyn |y* + H(@)y + F(z) =
H(z) = H'(X)y + F'(z) = 0} = ¢.
3)

Let P = (z,y) be a point on C. The opposite —P
of P is defined as —P = (z,y + H(z)). Let P be
the point at infinity on C and — Py, = P. We call
a P such that P = —P a ramification point and a
P such that P 4 —P a generic point. A point P is
a ramification point, if and only if its X-coordinate
is a root of H(z) =0 or P = P.

A divisor D on C is defined as a finite formal sum

D= Z m;P;,m; € 7. (4)
P;eC

The divisors form an Abelian group D.
The degree deg D of D is defined as

degD = Zmi. (5)

The divisors whose degree are zero form a subgroup
D0 of D.

For a rational function f on C, a divisor (f) is
defined as

(f) = Zmzp - Zmea (6)

where P are zeros of f with multiplicities m, and

Q are poles of f with multiplicities m, on C. A di-

visor of such form is called a principal divisor. The

set of principal divisors is a subgroup D' of D°.
The Jacobian variety of C is defined as

Jo =29 (7)

The divisor classes in J¢ fixed by the 2"th-power



Frobenius map form a subgroup J¢(Fan ) of Jo. It
is a finite Abelian group, therefore can be used to
define discrete logarithm problems.

This paper will consider addition of D € J¢(Fan ).

2.2 Ordinary Jacobian varieties and iso-

morphic curves
For a positive integer r,

Jolr] = {D € Jo | vD =0} C®)

is called the r—torsion group of Jc¢.
Jc is called ordinary, if and only if

Jcl2] = (2/22)*. (9)

i.e., J¢ is ordinary, if and only if deg H = 2 in (2).
We assume J¢ is ordinary hereafter.
If J¢ is ordinary, the definition of C can be trans-
formed into the form

C/Fyn Y2 + H(X)Y = F(X), (10)

H(X) = X%+ h X + hy,
F(X) =X+ f3X*+ fiX + fo

by an isomorphism.
Therefore, (10) will be used as the definition
equation of C hereafter.

2.3 Representation of divisor classes

For D1,Dy € D°, we use D; ~ Dy to mean that
D, — Dy € DL

A divisor class of J¢ can be represented by a di-
visor in the following form:

D=Zm,~Pi—ZmiPoo, m; 20 (11)
(] K3
where, P; & —P; for Vi % j.

Such a divisor D in (11) is called semi-reduced.
Y.;m; is defined as the weight of D[4]. A semi-
reduced divisor with weight less than the genus is
called a reduced divisor. Then any divisor class
D € Jc can be uniquely represented by a reduced
divisor.

Furthermore, a semi-reduced divisor D can be

represented by a pair of polynomials
D=(U,V), (12)

where U,V € Fan[X].
Denote P; = (zi,y;),

U =JJ(X + )™ (13)
and V is the unique polynomial satisfies
F+HV+V?=0modU,degV < degU. (14)
Moreover,
yi = V(z:)

for P; = (z4,y) in (11).
We call such a representation of D given by (12)

(15)

as Mumford’s representation.

Notice that D = (U, V), U,V € Fan [X] is equiv-
alent to D € J¢o(Fan). Therefore we assume here-
after U,V € Fan [X].

For a weight two divisor D = (U, V),

-D=(U,U+V+H). (16)
For a weight one divisor D = (X + uy, vg),
=D = (X 4 uo,vo + H(uo)). (17)

3. The Harley algorithm for curves
over odd characteristic fields [5]

This section outlines the Harley algorithm for a
hyperelliptic curve (1) according to [4], [5].

For the curve (1), Mumford’s representation of its
semi-reduced divisors can also be defined [1], if one
replaces (13) with

U=[[(x-z)™, (18)
(14) with

F—-V?2=0modU,degV < degU, (19)
and (16) with

—D=(U,-V). (20)

The Harley algorithm consists of two different
computation procedures, one for addition D3 =
D1 + Do, and the other for doubling Dy = 2D;.

In the addition procedure, all I/O divisors D; =
(U1,V1), Dy = (Us, Va), D3 = (Us, V3) are assumed
to be reduced.

If the size of the definition field Iy is large enough,
the weights of both D;, D» almost always equal two.
Besides, D1, Dy do not contain the same point or
points opposite to each others. In other words,
degU; = degUs = 2 and ged(Uh,Uz) = 1. We



will call such case the most frequent case in this
paper.

Below, we sketch roughly the addition procedure
of Harley algorithm for the most frequent case,
which consists of composition and reduction.

In the composition part, one computes the semi—
reduced divisor D = (U, V) such that D ~ —Dj
- and U = U;U,. V are obtained by the Chinese re-
mainder theorem. Then in the reduction part, one
computes a reduced divisor such that D3 ~ —D.

In the doubling procedure, both the input divisor
D: = (U1, V1) and the output divisor Dy = (Us, Va)
are also assumed to be reduced.

Once again, if the size of F; is large enough, the
weight of D; almost always equals two. Besides, D;
does not contain ramification points except Py. In
other words, deg U; = 2 and ged(U1, V1) = 1, which
is also called the most frequent case.

Similar to the addition, the doubling procedure
for the most frequent case also consists of the com-
position part and the reduction part, where the
Chinese remainder theorem is replaced by Newton’s
iteration.

Besides, one may notice that when ged (U, Uz) £
1, the most frequent case addition procedure fails
since the Chinese remainder theorem does not hold.
The most frequent case doubling also fails in the
case ged(Uy, Vi) # 1, because Newton’s iteration
can not be applied. In these cases, different proce-
dures should be used.

In fact, the Harley algorithm contains various
procedures each corresponding to different weights
of input divisors. Therefore, classification of in-
put divisor classes is necessary before composition.
See [5], [9] for details of classification.

4. Most Frequent Case Algorithm

In this section we extend the Harley algorithm to
a hyperelliptic curve (10) over Fo» and show proce-
dures in the most frequent case.

Hereafter, small letters are used to denote ele-
ments of Fon and capital letters denote polynomials
in X over Fan. The coefficient of X* in T' € Fan [X]
is as t;.

4.1 Most Frequent Case Addition Algo-

rithm
Below, we show a procedure for addition D3 =
Dy + Dy, D; = (U,,V;) € JC(FQTA) in the most
frequent case when deglU; = deglU; = 2 and
ged(Uy,Up) = 1.
In the composition part, one computes the semi-
reduced divisor D = (U,V) such that D ~ —Dj3

and U = U1U,. Here V is obtained as
V =8U, + V1, (21)

S=(Voa+WV1)U; ! mod Uy, degS <1

(22)
by applying the Chinese remainder theorem to

V = Vi mod Uy, (23)

V =V, mod Us. (24)

In the first place of the reduction part, one com-
putes a reduced divisor Dj such that D ~ D. Uj
is computed as

F+H 2
U:;=81_2 + [‘]/'*'V

according to [9], [10]. In fact, when s; = 0 one needs

(25)

another procedure, which is omitted here due to the
space limitation.
V4 is obtained as

Vs = S(Uy + U3) + s1(u11 + ujyy)Us + Vi (26)
from

Vi =V mod Us (27)

and (21).
Finally, the output divisor D3 = —Dj is given by

D3 = (U3, V3) = (U3, U3 + V3 + H) (28)

according to (16).

In practice, Uj is computed by substituting (21)
for (25) as in[9],[10], rather than using (21) di-
rectly. The Karatsuba multiplication is used for
multiplication over Fa» in (22) and (26). Moreover,
similar to [10], two inversions required in (22) and
(25) can be replaced with one inversion and four
multiplications by Montgomery’s multiple inversion
technique [3].

Consequently, we obtain a most frequent case ad-
dition procedure which costs I +25M (or 21 +21M



without the multiple inversion).

Table 1 in Appendix shows further details of the
proposed addition algorithm and the cost of each
step in the algorithm.

4.2 Most Frequent Case Doubling Algo-

rithm
Below, we show a procedure for doubling D, =
2D; in the most frequent case, i.e., deglU; = 2 and
ged(Up, H) = 1. Notice that one needs different
conditions from those for (1) in Section 3. of odd
characteristic.
Firstly, one computes the semi-reduced divisor
D = (U, V) such that D ~ =Dy and U = U? in the
composition part. Here V is obtained as

V =SU; + V7, (29)
2
s=FHANHV pot 0d Uy, degS <1
Ux
(30)
by applying Newton’s iteration to
V= V1 mod Ul. (31)

The reduction part follows the same steps as for
addition. i.e., the output divisor Dy = (Us, V3) is
obtained as

F+HV +V2
Us =31—2_+___+_, (32)
U
Vo =S(U1 + Un)+
(81(’U,11 +u21) +1) U,+Vi+ H. (33)

Similar to the addition procedure, the doubling
procedure is in practice further tuned up by using
techniques such as the Karatsuba multiplication,
and the multiple inversion technique.

Consequently, the procedure for the most fre-
quent case doubling costs I + 27M (or 2I + 23M
without the multiple inversion).

Further details of the proposed doubling algo-
rithm and the cost of each step can be found in
Table 2 in Appendix.

Remark 1. The reduction procedures for V de-
scribed here are applicable to the improved Harley
algorithm for (1) shown in [9], [10]. For example, V3
can be computed as

V3 = S(Us — Uy) — s1(us1 —u11)Us — Vi (34)

in the addition. Using this technique, the improved
Harley algorithm needs I + 25M for an addition
and I + 28M (or I + 26M, if fy = 0) for a dou-
bling, or 21 4+ 21 M for an addition and 21 4 24M
(or 2T +22M, if f4 = 0) for a doubling without the
multiple inversion.

5. Algorithms for Other Cases

This section outlines procedures of the proposed
algorithm for cases other than the most frequent
case. Classification of input divisor classes is also
discussed here.

In fact, the classification of input divisor classes
for addition is the same as that given in[5]. As
shown in 4. 1, the other procedures can also be eas- '
ily obtained by modifying those given in [5]. There-
fore, we will only give an outline for doubling, i.e.
to compute Dy = (U, V2) = 2D; for D; = (U1, V1).

An input divisor D; for doubling can be classified
according to its weight, or deg U, [5].

Since when the weight of D; is zero, Dy = 0, we
will only show the procedures for the cases when
D; has weight one and two.

5.1 Doubling of weight one divisors
Let

Dy = (U1, Vi) = P — Py, (35)

then P = (u19,v10) obviously.

To double a weight one divisor D; requires to de-
tect whether P is a ramification point or not.

If H is irreducible over Fa» then P is a generic
point since

P : a ramification point < ged(Uy, H) = U;.
(36)

If H is reducible over Fsn, one has to precompute

the roots of H over Fon, o, 1 = 1,2. If
(37)

Uio = &

for s = 1 or 2, then P is a ramification point and
DQ =0.

Now, we assume P to be a generic point.

In this case, Us is obtained as

Uy = U = X% 4+ 4,

and V; as



F'(u10) + H' (u10)v10

= 39
V20 = U10v21 + V10, (40)
because V; is the tangent of C' at P and
dY F'+HY
xX- g (41)

5.2 Doubling of weight two divisors

Doubling of a weight two divisor D;, also requires
classification of the divisor by the number of rami-
fication points in D;. This can be done by checking
ged(Uy, Hy).

Firstly, the case gcd(U1, H) = 1 is detected by
computing the resultant of U; and H since

ged(Un, H) = 1 & res(Un, H) + 0. (42)

If gcd(Uy, H) = 1 then D; does not contain ramifi-
cation points except Py, which is the most frequent
case. The procedure for this case has been shown
in 4.2. See Step 1 in Table 2 for computation of
res(Uy, H).

When ged(Ur, H) #+ 1, ged(Up, H) is a polyno-
mial of degree one or two.

The case degged(U;, H) = 2 can be easily de-
tected from

degged(U;,H) =2 U; = H. (43)

In this case, D; consists of ramification points and
Dy = 0.

Finally, we show the procedure for the case
degged(Uy, H) = 1. If H is irreducible over Fan,
degged(U;, H) + 1 and the procedure is unneces-
sary, so we assume H to be reducible over Fon .

Let

D1 =P+ P, -2P, (44)
~and P, be a ramification point. Then,
Dy, =2D), D} = P — Py, (45)
because
2(P, — Py) =0. (46)

Therefore, D, can be obtained from (45) by the pro-
cedure described in 5. 1, if the weight one divisor D}
is known.

Using the roots a;,ay of H over Fan given by

precomputation, one can found D] = (U7, V{) as
follows.

The X—coordinate of P, equals o, if Ui (1) = 0.
Otherwise, it equals o because it is either o or .
If o is the X—coordinate of P,, D can obtained as

U{ =X + ui + azg, (47)

Vi = vnuyg + vio, (48)

because ui; + a7 is the X-coordinate of P and
v11(u11 + @1) + v1o is the Y—coordinate.

6. Conclusion

This paper proposed an extension of the Harley
algorithm to curves over finite fields of characteris-
tic two. The proposed algorithm takes I +25M for
an addition and I 4+ 27M for a doubling.
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Appendix: Details of the most frequent case algorithms

Input | Weight two reduced divisors : D1 = (U1, V1) and D2 = (U2, V2),
C:Y?2+ H(X)Y = F(X)
Output | A weight two reduced divisor D3 = (Us, V3) = D1 + D2
Step | Procedure ) Cost
1 Compute the resultant r of U; and Us. aM
w1 — w11 + uz1; Wo — u21w1 + uig + Ugo; T+ (Uro + Uzo)Wo + U20WS.
If r = 0 then call another procedure. —
Compute I = i1 X +ig = rU; ' mod Us. -
11 ¢ w1;to ¢« Wo.
4 Compute T = t1 X + to = (V1 + V2)I mod Us. 5M
t2 — (v11 4 v21)w1; to « (vio + v20)wo; t1 « (v11 + v21 + vio + v20)(w1 + wo) + t2 + to;
t1 + t1 +t2uz1; to « to + tauzo.
If t; = 0 then call the sub-procedure. —
Compute S = 51X + sp. (Multiple inversion technique) I+6M
w2 (Tt1)_l; w3  war; wq — watl; ws  war;s1 « waty; so < wato.
7 Compute Us = X2 + uz1X + uzo = 31_2(F + H(SUy 4+ V1) + (SU1 + V1)2) /(U1 U2). 5M
uz1 w1 + ws(1 + ws); uso0  u21w1 + u10 + u20 + ws(w1 + ws(so + s +w1)).
8 Compute V3 = v3:X + v39 = SU; + V1 + H mod Us. 5M
w1 4 U1l + U31; Wo ¢ U0 + U30; W2 ¢ S1W1; W3 ¢ SoWo;
wy (51 + s0)(w1 + wo) + w2 + w3; w2 + w2 + 15 w1  wa + Wwausz1; Wo ¢ w3 + W2u30;
v31 + w1 + v11 + h1; v30 < wo + v10 + ho-
Total I+25M
Table 1 Addition for weight two coprime divisors (Most frequent case addition algorithm)
Input | A weight two reduced divisor : D1 = (U1, V1)
C:Y?+ H(X)Y = F(X)
Output | A weight two reduced divisor D2 = (U2, V2) = 2D)
Step | Procedure Cost
1 Compute the resultant r of U; and H. 4M
w1 « hy +u11; wo « ho + w10 + un1wi; 7 + uio(uio + ho + h1wi) + howo.
2 If r = 0 then call another procedure. —
3 Compute I =i1X +i9 =rH ! mod U;. —
11  wi1; 1o — Wo.
4 Compute T = t1 X + to = I(F + HVi + V) /U1 mod Ui. 8M
wy & f3 +v11 +uly; w3+ vio + v (vin + h1);
t — wowsz + wiws; to + (u11wo + urow1)wz + wWows.
If t; = 0 then call the sub-procedure. —
Compute S = 51X + so. (Multiple inversion technique) I+6M
wo « (rt1)™1; wa « wor; w3 « wot1; wa + war; s1 ¢ w3t1; So — wsto.
7 Compute Uz = X2 4+ un X + uz0 = s7 2(F + H(SU1 + V1) + (SU1 + V1)?) /UZ. aM
U1 + wa(l +wa); uzo + wa(wa(so(l + s0)) + w1).
8 Compute V; = v21 X + vy9 = SU; + V1 + H mod Ua. 5M
w1 ¢ u11 + U21; Wo ¢ U0 + U20; W2  S1W1; W3 ¢ SoWo;
wa + (81 + so)(w1 + wo) + w2 + w3; w2 — w2 + 1; w1 ¢ wa + wauz1; Wo ¢ w3 + W2u20;
v21 « w1 +v11 + h1; v20 « wo + vio0 + ho.
Total I+27M

Table 2 Doubling for weight two coprime divisors (Most frequent case doubling algorithm)




