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あらまし Cantorアルゴリ ズムを用いた超楕円曲線暗号系は, 同一の安全性を持つ楕円曲線暗号系と比較し数倍低速であ
ることが知られている . 従って , 高速な超楕円曲線暗号系の構成は重要な研究課題である .
最近, Harleyによって種数 2の超楕円曲線上の高速な加算アルゴリ ズムが提案された . 本論文では, まず Harleyアルゴリ ズ
ムの改良を示し , 次にこのアルゴリ ズムの適用により , 楕円曲線暗号と比較し , より 高速な超楕円曲線暗号を構成可能である
ことを示す. 更に , 実際に楕円曲線暗号系と同等速度の超楕円曲線暗号系を構成可能であることを実装実験により 示す.
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Abstract: Most current hyperelliptic curve cryptosystems (HECC) use the Cantor algorithm in hyperelliptic
additions for encryption and decryption. It has been reported that hyperelliptic curve cryptosystems are more than
several times slower than elliptic curve cryptosystems (ECC). It is then an interesting and challenging question that
if the HECC could be faster than the ECC. Recently, Harley proposed a faster algorithm of addition on genus two
hyperelliptic curves. In the first part of this paper, we show an improvement of the Harley algorithm which needs
less computation then faster than the elliptic addition. The second part of the paper is a tentative implementation
of the genus two HECC using the improved Harley algorithm, comparing with the ECC, which shown that the
performance of the HECC is actually equal to that of the ECC.
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1 Introduction

Hyperelliptic curve cryptosystems (HECC for short) are
known to be secure if general curves of small genus (more
precisely, genus two or three) are used. In particular,
only efficient attacks such as function field sieves and
their variants are known for curves of moderately large
genus [ADH94][Pau96][FP97][Gau00][EG00]. For the
small genus curves whose Jacobian varieties contain
a large prime factor in their orders can be used to
define discrete logarithm of fully exponential complexity.
Moreover, numerous studies about construction of such
secure curves have been carrying out, e.g. [Kob89][Pil90]
[Kam91][Spa94][AH96][FM98][SSI98][SS98][GHS00][GH00]
[CMT00][CMKT00][Wen00][Ked01], and it is anticipated
that we will be able to construct enough many secure
hyperelliptic curves efficiently in the near future.

Besides, in hyperelliptic curve cryptosystems, efficient
encryption and decryption requires fast addition algo-
rithms for the divisor group of the hyperelliptic curve.
Currently the standard addition algorithm for hyper-
elliptic curves is proposed by Cantor [Can87]. The Can-
tor algorithm carries out fast addition by using Mum-
ford’s representation of divisors, and fast composition
and reduction of quadratic forms related hyperelliptic
function fields. A large number of researches have
been reported on improvement of the Cantor algorithm
[Kob89][PS98][SSI98][SS98][Sma99][Nag00]. However, it
seems that they are still not fast enough comparing with
elliptic curve cryptosystems (ECC for short). It has been
reported that HECC based on the Cantor algorithm are
more than several times slower than ECC in practice
[Sma99]. This seems to be the main reason preventing
HECC from practical usage.

In fact, the addition of divisors on hyperelliptic curves
is more complicated than the addition of points on elliptic
curves. On the other hand, however, according to the
Hasse-Weil theorem an HECC needs only a definition field
of g times smaller size than that of an ECC with the
same security. It is then an interesting and challenging
question that how to take this advantage on field sizes and
overcome the difficulty in divisor additions, and could the
HECC surpass the speed of the standard ECC.

A major recent progress in fast addition algorithms
on genus two hyperelliptic curves is due to Harley
[GH00][Har00a][Har00b]. The Harley algorithm carries
out the addition based on the theory and tools in Mum-
ford’s textbook [Mum84]. Instead of computing quadratic
forms related hyperelliptic function fields, they developed
a variation of the chord-tangent law on elliptic curves. Be-
sides, they applied the Chinese remainder theorem and
Newton’s iteration to divisor additions and evenmore,
they used the Karatsuba multiplication explicitly in the
algorithm. Consequently, their algorithm is much faster
than the Cantor algorithm and its variations. Specifi-
cally, it takes 2I + 27M for an addition and 2I + 30M
for a doubling in general, much faster than the original
Cantor algorithm which takes 3I + 70M and 3I + 76M
respectively [Nag00], where I and M denote the costs of
an inversion and a multiplication respectively over the

definition finite field.
Although the Harley algorithm is potentially powerful

to speed up the HECC, since the algorithm is only men-
tioned in their work on point counting of hyperelliptic
curves, and the details are not enough explicitly given, it
seems still being neither widely known by general cryptol-
ogists nor implemented for performance comparison with
the ECC .

In this paper, we present an improvement of the Harley
algorithm. The improved algorithm takes 2I + 23M for
an addition and 2I + 25M for a doubling in general. It
is shown that, by applying the algorithm, the additions
of genus two hyperelliptic curves are faster than addition
of elliptic curves with the same keylength. Then we show
a tentative implementation of the algorithm which shown
that the performance of genus two HECC is actually equal
to that of ECC.

The paper is organized as follows. In Section 2, we
give preliminaries on the hyperelliptic curves, their divi-
sors, and the Jacobian varieties. In Section 3, we review
the Harley algorithm. A detailed procedure of the algo-
rithm is given here for reference of general researchers. In
Section 4, we present an improvement of the Harley algo-
rithm. In Section 5, we discuss the performance of genus
two HECC with the improved Harley algorithm compar-
ing with that of ECC. Conditions are given for genus two
HECC to surpass the ECC using the fast algorithm of
hyperelliptic addition. In Section 6, we show a tentative
implementation of both the improved Harley algorithm
and elliptic curve arithmetics.

2 Preliminary

Let p be an odd prime, n a positive integer and q = pn.
Then a hyperelliptic curve C of genus g defined over Fq

is defined as follows:

C :Y 2 = F (X),

F (X) = X2g+1 + f2gX
2g + · · · + f0, (1)

where fi ∈ Fq and disc (F ) 6= 0.
Let P = (x, y) be a point on C. Then its opposite is

−P = (x,−y). For the point at infinity, denoted P∞, we
define −P∞ = P∞ and call the points of the form (x, 0)
ramification points.

A divisor D on C is defined as a formal sum

D =
∑

Pi∈C

ordPi
(D)Pi, ordPi

(D) ∈ Z (2)

of points Pi on C. Obviously, the set D of the divisors
on C is an Abelian group. Any two divisors D1 and D2

are said to be coprime, if ordP (D1) 6= 0 implies that
ordP (D2) = 0 for any P ∈ C. The degree of a divisor
D is defined as

degD =
∑

i

ordPi
(D). (3)

The degree zero divisors D
0 forms a subgroup of D. For

a rational function f on C, we define the divisor of f ,



called the principal divisor, as

(f) =
∑

i

vPi
(f)Pi, (4)

where Pi are zeros and poles of f on C with the multiplic-
ities vPi

(f). The set D
l of principal divisors is a subgroup

of D
0. The Jacobian variety JC of C is defined as

JC = D
0/D

l. (5)

If both D1 and D2 belong to the same class in JC , they
are said to be linearly equivalent and denoted as D1 ∼ D2.
Each element D of JC can be represented in the form

D =
∑

i

ordPi
(D)Pi − (

∑

i

ordPi
(D))P∞ (6)

with no two points are opposite, where ordPi
(D) ≥ 0.

We call such a divisor semi-reduced, and
∑

i ordPi
(D) the

weight of D [GH00]. A semi-reduced divisor of weight
≤ g is called reduced in particular. For each element of
JC , there is a unique reduced divisor. Therefore, we can
identity an element of JC with its reduced divisor, and
define addition operation over JC by using the reduced
divisors.

Every semi-reduced divisor given by (6) can be repre-
sented as follows [Mum84]:

D = (U, V ), (7)

where U, V ∈ F̄q[X] such that U =
∏

(X − xi)
ordPi

(D)

with Pi = (xi, yi), deg V < deg U , and

F − V 2 ≡ 0 mod U. (8)

which is sometime called Mumford’s representation
[Har00a]. Obviously, deg U ≤ g, if D is reduced.

Thus we can define the set JC(Fq) of divisors D =
(U, V ) by Mumford’s representation with U, V ∈ Fq[x],
which is a finite Abelian group. One can then define dis-
crete logarithm problems suitable for cryptosystems on
it. Hereafter, only the divisors belonging to JC(Fq) will
be considered. It is well known that the order of JC(Fq)
falls in the following Hasse-Weil range.

(q1/2 − 1)2g ≤ #JC(Fq) ≤ (q1/2 + 1)2g (9)

which implies the field size advantage of HEC comparing
with the ECC.

3 Harley algorithm

The Harley algorithm for addition on genus two hyper
elliptic curves appeared in [GH00] firstly, then Harley
shown a detailed document of the addition [Har00a] and
sample C codes of the doubling [Har00b] on his home
page. Their algorithm based on theory and tools de-
veloped in Mumford’s textbook [Mum84]. Instead of
computing quadratic forms related hyperelliptic function
fields, they extended the so-called chord-tangent law for
point addition on elliptic curves. The strategy is to clas-
sify the divisors in the addition carefully into different
types then optimize the procedures for every type.

In particular, to compute D3 = (U3, V3) = D1 +D2 for
given reduced divisors D1 = (U1, V1) and D2 = (U2, V2),
one checks the weights of the given divisors by the de-
grees of polynomials U1 and U2 at first, and executes the
procedures for different weights. Moreover, the other sub-
procedures are also adopted according to whether the di-
visors have common points, which can be checked by the
resultant of polynomial U1 and U2.

In each procedure, first, one computes U for the semi
reduced D ∼ D3, e.g. U = U1U2 when D1 and D2 are
coprime. Then one computes V satisfied (8) by Chi-
nese remainder theorem (Newton’s iteration) for addition
(doubling, respectively). E.g. in the case that D1,D2 are
coprime, V satisfy the following condition:

V ≡ V1 mod U1, (10)

V ≡ SU1 + V1 mod U, S ∈ Fq[X], (11)

and we can find S as

S ≡ V2 − V1

U1
mod U2 (12)

by CRT. Finally, one reduces (U,−V ) and obtain the re-
duced divisor (U3, V3). For the detailed usage of the CRT
and Newton’s iterations, see e.g. [GCL92], [GG99].

Beside of using CRT and Newton’s iterations, the al-
gorithm uses the Karatsuba multiplication explicitly step
by step. Consequently, the algorithm is much faster than
the other addition algorithms which have been proposed
until now.

While [Har00a] shown the algorithm, it seems that de-
tails are not explicitly enough to fill up the procedures.
Here, we show a procedure in the Table 1 of weight two
coprime addition according to [Har00a], which is generally
the most case. The computational cost of the algorithm
is also evaluated. We considered only the costs for in-
versions and multiplications over definition finite fields,
because they usually dominate the other operations.

In the Table 1, the second column shows the procedure
for all steps, and the third column shows the cost of each
step and the total cost. Capital and small letters with
subscripts denote variables for polynomial and finite field
elements respectively in the second column. The coeffi-
cient of Xi in a polynomial, e.g. Tj , are denoted tij .

Tj = tj deg Tj
Xdeg Tj + · · · + tjiX

i + · · · + tj0. (13)

“(Karatsuba)” means using the Karatsuba multiplication.
In the third column, I and M denote the cost for an inver-
sion operation and a multiplication operation respectively
over the definition finite field.

One sees that the algorithm takes 2I + 27M for an
addition and 2I + 30M for a doubling in the most case
from the Table 1 and [Har00b] respectively.

4 Improvement

In this section, we present an improvement to speed up
the Harley algorithm.

This improvement is to follow the same strategy of
Harley but go further to optimize the procedures for dif-
ferent cases.



Input Weight two coprime reduced divisors
D1 = (U1, V1) and D2 = (U2, V2)

Output A weight two reduced divisor D3 = (U3, V3) = D1 + D2

Step Procedure Cost

1 Compute the resultant r of U1 and U2. 5M

w1 ← u11u21; w2 ← u10 + u2

21 − u20 − w1;
r ← u10(w2 − u20) + u20(u

2

11 + u20 − w1);
2 If r = 0 then D1 and D2 have a linear factor in common,

and call the exclusive procedure. —

3 Compute I1 = i11X + i10 ≡ 1/U1 mod U2. I + 2M

w1 ← r−1; I1 ← (w1(u21 − u11))X + w1w2;
4 Compute S = s1X + s0 ≡ (V2 − V1)I1 mod U2. (Karatsuba) 5M

w1 ← v20 − v10; w2 ← v21 − v11; w3 ← i10w1; w4 ← i11w2;
w5 ← (i10 + i11)(w1 + w2) − w3 − w4;
S ← (w5 − u21w4)X − u20w4 + w3;

5 If s1 = 0 then D3 should be weight one,

and call the exclusive procedure. —

6 Compute the coefficient k1 of X in K = (F − V 2

1 )/U1. —

k1 ← f4 − u11;
7 Compute T1 = s1X

3 + t12X
2 + t11X + t10 = SU1.

(Karatsuba) 3M

w1 ← s1u11; t10 ← s0u10;
t11 ← (s0 + s1)(u10 + u11) − w1 − t10; t12 ← w1 + s0;

8 Compute U3 = (S(T1 + 2V1) − K)/U2. (Karatsuba) 7M

u32 ← s2

1;
w1 ← s1(s0 + t12) − 1; w2 ← s1(t11 + 2v11) + s0t12 − k1;
u31 ← w1 − u21u32; u30 ← w2 − u20u32 − u21u31;

9 Make U3 monic I + 2M
w1 ← u−1

32
; u30 ← u30w1; u31 ← u31w1; u32 ← 1;

10 Compute V3 ≡ −(T1 + V1) mod U3. (Karatsuba) 3M

w1 ← t11 + v11; w2 ← t10 + v10;
w3 ← s1u31; w4 ← t12 − w3; w5 ← w4u30;
w6 ← (u30 + u31)(s1 + w4) − w3 − w5;
v30 ← w6 − w1; v31 ← w5 − w3;

Total 2I + 27M

Table 1: Addition for weight two coprime divisors on a genus two HEC

We take the addition of weight two coprime divisors
D1 = (U1, V1),D2 = (U2, V2) described in the Table 1
as an example to show the improvement. In the step 8
and 9 of the original algorithm (described in the Table
1), one computes monic U3 for given U2, V1, S, T1, and K
by using Karatsuba multiplication, and the computation
takes I +9M . Since the leading coefficient of the result of
the step 6 is s2

1, one can obtain monic U3 by computing

U3 = s−2
1 (S(T1 + 2V1) − K)/U2. (14)

Then, by careful manipulation on (14) substituting SU1

for T1, one obtains

U3 = X2 + (w1(2s0 − w1) − w2)X +

w1(w1(s
2
0 + u11 + u21 − f4) + 2(v11 − s0w2))

+ u21w2 + u10 − u22, (15)

where w1 = s−1
1 and w2 = u21 − u11.

Computing U3 according to (15) takes only I + 6M .
Thus, one can reduce the costs of the step 8 and 9 in
the Table 1 by 3M using these techniques. The similar
improvements are applied to the whole original Harley
algorithm.

We will not be able to show the whole improved al-
gorithm here due to space limitation, but only show the
procedures of the algorithm for the most case addition
i.e. adding weight two coprime divisors, and the most
case doubling, i.e. doubling a weight two divisor with-
out ramification points, in the Table 2 and the Table 3
respectively. Notations in both tables are the same as in
the Table 1.

We also show the costs of the whole of the algorithm
in the Table 4.

The Table 4 shows the costs of D1 +D2 where the first
row and the first column show the forms of divisors D1

and D2 respectively without P∞ terms. Pi denotes the
point on C with Pi 6= ±Pj , j 6= i.

From the Table 4, we known the cost of the most case
addition, which is the case of adding D1 = P1 +P2−2P∞

and D2 = P3 + P4 − 2P∞ with P1, P2 6= ±P3,±P4, is
2I + 23M . The cost of the worst case, which is the case
of adding D1 = P1 + P2 − 2P∞ and D2 = P1 + P3 − 2P∞

with P3 6= P1, P2, is 4I + 33M . Moreover, for doubling,
the cost is 2I +25M in both the most case and the worst
case, which is doubling of D1 = P1 + P2 − 2P∞.

Remark 1. In fact, only upper bounds are shown the Ta-



Input Weight two coprime reduced divisors
D1 = (U1, V1) and D2 = (U2, V2)

Output A weight two reduced divisor D3 = (U3, V3) = D1 + D2

Step Procedure Cost

1 Compute the resultant r of U1 and U2. 4M

w1 ← u21 − u11; w2 ← u21w1 + u10 − u20;
r ← u10(w2 − u20) + u20(u20 − u11w1);

2 If r = 0 then D1 and D2 have a linear factor in common,

and call the exclusive procedure. —

3 Compute I1 ≡ 1/U1 mod U2. I + 2M

w3 ← r−1; I1 ← w1w3X + w2w3;
4 Compute S ≡ (V2 − V1)I1 mod U2. (Karatsuba) 5M

w1 ← v20 − v10; w2 ← v21 − v11; w3 ← i10w1; w4 ← i11w2;
w5 ← (i10 + i11)(w1 + w2) − w3 − w4;
S ← (w5 − u21w4)X − u20w4 + w3;

5 If s1 = 0 then D3 should be weight one,

and call the exclusive procedure. —

6 Compute U3 = s−2

1
((S2U1 + 2SV1)/U2 − (F − V 2

1 )/(U1U2)). I + 6M

w1 ← s−1

1
; w2 ← u21 − u11;

u30 ← w1(w1(s
2

0 + u11 + u21 − f4) + 2(v11 − s0w2))+
u21w2 + u10 − u20;

u31 ← w1(2s0 − w1) − w2; u32 ← 1;
7 Compute V3 ≡ −(SU1 + V1) mod U3. 6M

w1 ← u30 − u10; w2 ← u11 − u31;
v30 ← s1u30w2 + s0w1 − v10;
v31 ← s1(u31w2 + w1) − s0w2 − v11;

Total 2I + 23M

Table 2: Improved addition for weight two coprime divisors on a genus two HEC

Input A weight two reduced divisor D1 = (U1, V1)
without ramification points

Output A weight two reduced divisor D2 = (U2, V2) = 2D1

Step Procedure Cost

1 Compute the resultant r of U1 and V1. 4M

w1 ← v2

11; w2 ← u11v11; r ← u10w1 + v10(v10 − w2);
2 If r = 0 then D1 is with a ramification point,

and call the exclusive procedure. —

3 Compute I1 ≡ 1/(2V1) mod U1. I + 2M

w3 ← (2r)−1; I1 ← −v11w3X + (v10 − w2)w3;
4 Compute in T1 ≡ (F − V 2

1 )/U1 mod U1. 4M

w2 ← u11 − f4; w3 ← 2u10;
t10 ← u11(4u10 − u11w2 − f3) − f4w3 + f2 − w1;
t11 ← u11(2w2 + u11) + f3 − w3

5 Compute S ≡ I1T1 mod U1. (Karatsuba) 5M

w1 ← i10t10; w2 ← i11t11;
w3 ← (i10 + i11)(t10 + t11) − w1 − w2;
S ← (w3 − u11w2)X − u20w2 + w1;

6 If s1 = 0 then D2 should be weight one,

and call the exclusive procedure. —

7 Compute U2 = s−2

1
((SU1 + V1)

2 − F )/U2

1 . I + 4M

w1 ← s−1

1
; u30 ← w1(w1(s

2

0 + 2u11 − f4) + 2v11);
u31 ← w1(2s0 − w1); u32 ← 1;

8 Compute V2 ≡ −(SU1 + V1) mod U2. 6M

w1 ← u11 − u21;
v20 ← u20(s1w1 + s0) − s0u10 − v10;
v21 ← s1(u21w1 + u20 − u10) + s0w1 − v11;

Total 2I + 25M

Table 3: Improved doubling for a weight two divisor without ramification points on a genus two HEC



P1 2P1 P1 + P2

P1 I + 5M I + 11M 2I + 17M

−P1 0 3M 3M

P2 I + 3M I + 10M 2I + 17M

2P1 I + 11M 2I + 25M 4I + 33M

P1 + P2 2I + 17M 4I + 33M 2I + 25M

−P1 + P2 3M 2I + 13M 2I + 7M

P1 + P3 2I + 17M 4I + 33M 4I + 33M

−P1 + P3 3M 2I + 13M 2I + 13M

P3 + P4 I + 10M 2I + 23M 2I + 23M

Table 4: Costs of the improved algorithm

Input Two divisors D1 = P1 + P2 − 2P∞,D2 = P1 + P3 − 2P∞ with P3 6= P1, P2

Output A divisor D3 = D1 + D2

Step Procedure

1 Compute D4 = P1 − P∞ and D5 = P3 − P∞.
2 Compute D6 = D1 + D5.
3 Compute D3 = D4 + D6.

Table 5: The worst case computation

ble 4. E.g. in the case of adding two divisors D1 =
P1+P2−2P∞,D2 = P3+P4−2P∞, it only takes I+15M ,
when s1 = 0 in the step 5 of the Table 2.

Remark 2. We have slightly modified the procedure for
the worst case computation as in the Table 5. This strat-
egy give us less cost of the computation, i.e. 4I + 33M .
The original procedure described in [Har00a] using im-
proved computation in each step costs 6I + 47M .

5 Application to cryptosystems

In this section, we discuss the performance of genus two
HECC using the improved Harley algorithm and compare
it with the performance of ECC.

When an elliptic curve of order N over FqE
is used in

ECC, qE ≈ N from (9). On the other hand, when a genus
two hyperelliptic curve of order N is used in HECC with
the same security as the ECC, the curve can be chosen
over FqH

with qH ≈
√

N again from (9). Therefore, genus
two HECC which have the same sequrity as ECC over FqE

can be constructed over FqH
with qH ≈ √

qE .

Now, we denote the cost of a multiplication over FqH

and FqE
as MH and ME respectively. Then, ME ≈ 4MH ,

because qH ≈ √
qE . Here we suppose that classical mul-

tiplication methods take time of 2(log2 q)2 for a multili-
cation over large Fq [GG99] is usually used for the mul-
tiplication over the definition finite fields, except special
implementations such as using large size hardware mul-
tipliers and bit-slice implementation [KAHO01]. There-
fore, an addition and a doubling on the elliptic curves
take 16ME ≈ 64MH and 10ME ≈ 40MH respectively in
general assuming Jacobian projective coordinates [IEE99]
are used for the elliptic arithmetic.

On the other hand, a genus two hyperelliptic addition
takes 4I + 33M in the worst case, which is the case of
adding two divisors D1 = P1 + P2 − 2P∞ and D2 = P1 +

P3−2P∞ with P3 6= P1, P2. In this case, P1 = P2 induces
P1, P2 ∈ C(FqH

) , because no points in C(Fq2

H
)\C(FqH

)
conjugate themselves under the Galois action over FqH

.
Also P3 ∈ C(FqH

) because P1 ∈ C(FqH
). Moreover, if

P1 6= P2, we also have P1, P2, P3 ∈ C(FqH
), because both

P2 and P3 are conjugates of P1 and uniquely determined
by the Galois action over Fq, and P2 6= P3. Consequently,
we have P1, P2, P3 ∈ C(FqH

) in the worst case. Therefore,
there are O(q3

H) such pairs (D1, D2) among all the O(q4
H)

pairs of divisors in JC(FqH
). Then, we can neglect the

cost for the worst case when qH is enough large. Thus, we
consider the costs of an addition and a doubling on the
hyperelliptic curves to be the costs in the most case, which
are 2IH + 23MH and 2IH + 25MH respectively where IH

denotes the cost of inversion over FqH
.

In discrete logarithm based cryptosystems, such as
ECC and HECC, the cost of scalar multiplications dom-
inates the other operations. Hence we can compare the
performance of genus two HECC with that of ECC using
the costs of scalar multiplicatioin on a genus two hyper-
elliptic curve over FqH

and on a ellptic curve over FqE
.

Considering that several methods are known for such
scalar multiplication [Knu98][MvOV97], we will assume
that an addition and a doubling occur in the same
frequency among a scalar multiplication for simplicity.
Then, using the improved Harley algorithm, genus two
HECC do surpass ECC in the speed performance if IH <
14MH , which is usually satisfied.

6 Implementation

In this section, we show an implementation of both the
improved Harley algorithm and elliptic curve arithmetic
for comparison. Each was implemented over optimal ex-
tension fields [BP98], a 93-bit OEF FqH

= Fp(α) for
hyperelliptic curves and a 186-bit OEF FqE

= Fp(β) for
elliptic curves, where p = 231 − 1, α is a root of X3 − 5,



Genus Two Hyperelliptic Curve Elliptic Curve
addition doubling scalar mul. addition doubling scalar mul.
8.32µs. 8.74µs. 1.98ms. 11.6µs. 6.58µs. 1.76ms.

Table 6: Timings of implementations

and β is a root of X6 − 5. Then, both #JC(FqH
) and

#E(FqE
) are of 186-bit.

We used GNU G++-2.95.2 for each implementation.
The Jacobian projective coordinate described in IEEE
P1363 draft [IEE99] was used for elliptic addition, and
a sliding-window [MvOV97] of width four was applied to
each scalar multiplication without precomputation. For
inversions over finite fields, the linear algebraic method
described in [KMKH99] is used.

The timings of the implementations are given in the
Table 6. They were obtained on a Linux PC with Pentium
III 866MHz.

From the Table 6, one sees that the performance of
genus two HECC is roughly equal to that of ECC. This
is somewhat disappointing, as in this implementation
ME ≈ 3.8MH and IH ≈ 6.4MH , according to our com-
plexity analysis of both the algorithms the performance
of genus two HECC was expected to surpass ECC. This
result is mainly due to difficulty to implement the Harley
algotithm, which is much more complicated than elliptic
addition algorithms. It is expected that further research
on implementation of Harley-like algorithm will actually
build genus two HECC faster than ECC.

7 Conclusion

In this paper, we presented an improvement of the Harley
algorithm and analysis of complexity shows that the addi-
tion algorithm on genus two HECC has lower cost there-
fore is faster than addition on ECC. Then we shown a ten-
tative implementation of the improved Harley algorithm,
in which the performance of genus two HECC is equal
to that of ECC. It seems that the overall performance of
HECC depends strongly on efficiency of implementation.
We believe further improvement on both algorithm and
implementation is possible to eventually construct HECC
surpassing ECC in the near future.
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