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Abstract— Genus 3 hyperelliptic curve cryptosystems are able to carry out fast-encryption on a
64-bit CPU because a 56-bit field is enough for their definition fields. Recently, Kuroki et al. proposed
an extension of the Harley algorithm, which had been known as the fastest addition algorithm of divisor
classes on genus 2 hyperelliptic curves, on genus 3 hyperelliptic curves and Pelzl et al. improved the
algorithm. This paper shows an improvement of the Harley algorithm on genus 3 hyperelliptic curves
using Toom’s multiplication. The proposed algorithm takes only I + 70M (I + 71M) for an addition
(resp. a doubling) instead of I +76M (resp. I +74M), which is the best possible of the previous works,
where I and M denote the required time for an inversion and a multiplication over the definition
field respectively. This paper also shows 2 variations of the proposed algorithm in order to adjust the
algorithm to various platforms. Moreover the proposed algorithms are implemented on a 64-bit CPU.
The implementation results show a 160-bit scalar multiplication can be done within 176µs on a 64-bit
CPU Alpha EV68 1.25GHz.
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1 Introduction
Hyperelliptic curve cryptosystems have been able to use
in practice since a fast addition algorithm of divisor
classes on hyperelliptic curves (Cantor algorithm) was
proposed by Cantor [Can87].

Recently, Harley [GH00, Har00] proposed a new
fast addition algorithm on genus 2 hyperelliptic curves
(Harley algorithm). In the same fashion as the Can-
tor algorithm, the Harley algorithm uses Mumford’s
representation [Mum84] for input and output divisor
classes, but uses a method similar to chord-tangent
law in an elliptic curve instead of quadratic form com-
putations for polynomials used in the Cantor algo-
rithm. Moreover it uses modern polynomial compu-
tation techniques i.e. Chinese remainder theorem, New-
ton’s iteration, and Karatsuba’s multiplication. Con-
sequently the Harley algorithm is faster than the Can-
tor algorithm. Besides [MCT01] showed that hyper-
elliptic curve cryptosystems using the Harley algorithm
are theoretically able to reach the same performance
as elliptic curve cryptosystems and a lot of researches
on the Harley algorithm has been proposed afterwords
[MC01, MDM+02, Tak02, KGM+02, SMCT02, Lan02a,
Lan02b, Lan02c, TM02, TMM03, PWGP03, SMCT03,
PWP03b, MS03, PWP03a, KK03, Ava03]. Especially
Kuroki et al. [KGM+02] proposed an extension of the
Harley algorithm on genus 3 hyperelliptic curves over
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odd characteristic fields and Pelzl et al. [PWGP03]
showed its improvement and generalization for arbitrary
characteristic fields.

Genus 3 hyperelliptic curve cryptosystems can be
constructed on 56-bit fields from the Hasse-Weil range
[Sti93], even if Thériault’s recent improvement [Thé03]
of Gaudry’s attack [Gau00] is taken into account.
Therefore their implementation on 64-bit CPUs does
not need multi-precision arithmetic and they are able
to carry out fast-encryption.

This paper proposes improvements of the Harley al-
gorithm on genus 3 hyperelliptic curves from [KGM+02]
and [PWGP03] and shows implementation results of the
proposed algorithms. Moreover this paper discusses fi-
nite field arithmetic suitable for genus 3 hyperelliptic
curve cryptosystems to take the properties of the defi-
nition field and the platform chosen in this paper into
consideration.

In this paper, A, I, M , denote the required time of
computing a + b, 1/a and ab for the definition field el-
ements a, b respectively. To take the properties of the
definition field and the platform chosen in this paper
into account, the required time for −a, a − b, 2a are
also denoted as A, moreover, the required time for a2 is
also denoted as M .

2 Genus 3 hyperelliptic curves and their
divisor class groups

Let n be a positive integer, p 6= 2, 7 be a prime number,
and q = pn. A genus 3 hyperelliptic curve C over Fq is
defined as follows:
C : Y 2 = F (X)

F (X) = X7 + f5X
5 + f4X

4 + · · ·+ f0 ∈ Fq[X]
with disc (F ) 6= 0.



The divisor class group JC(Fq) of C forms a finite
Abelian group and therefore cryptosystems based on
discrete logarithm problems can be constructed on C.
Any equivalent class D in JC(Fq) can be represented by
Mumford’s representation defined as follows [Mum84].
Definition 1 (Mumford’s representation).

D = (U, V ), U, V ∈ Fq[X], where

U =
∏

(X − xi)ordPi
(D),

yi = V (xi)

for Pi = (xi, yi) ∈ C with ordPi(D) > 0, and

deg V < deg U, F − V 2 ≡ 0 mod U.

The degree of U is called the weight of D [GH00] and
D a reduced divisor, if its weight equals 3. Any class
in JC(Fq) is uniquely represented by a reduced divisor,
i.e. each class includes unique reduced divisor.

3 Harley algorithm on genus 3 hyper-
elliptic curves

This section shows a brief overview of the Harley al-
gorithm on genus 3 hyperelliptic curves according to
[KGM+02].

The Harley algorithm uses reduced divisors repre-
sented by Mumford’s representation for input and out-
put divisor classes. In the algorithm, first one executes
classification of the input divisor classes by using the
weights of them. Then one executes another classifica-
tion of the divisor classes by testing gcd(U1, U2) = 1 for
addition D3 = D1 + D2, D1 = (U1, V1), D2 = (U2, V2)
or by testing gcd(U1, V1) = 1 for doubling D2 = 2D1,
D1 = (U1, V1). These gcd computations are carried out
by a resultant computation in practice. The cases clas-
sified above, i.e. the case satisfied deg U1 = deg U2 = 3
and gcd(U1, U2) = 1 for addition and the case satisfied
deg U1 = 3 and gcd(U1, V1) = 1 for doubling, are called
the most frequent cases. See [KGM+02] for details of
the classification.

For genus 2 hyperelliptic curves, more precisely clas-
sification is executed and a different procedure is used
for each case [Har00, MCT01, SMCT02]. However, for
genus 3 hyperelliptic curves, there exist about 70 cases
and therefore the classification needs large costs. On
the other hand, the probability of occurring the cases
except the most frequent case is O(1/q) in both the
addition and the doubling [Nag00], so that these cases
can be negligible and an efficient strategy for genus 3
hyperelliptic curves is to take the Harley algorithm for
only the most frequent cases and the Cantor algorithm

Input: Genus 3 HEC C : Y 2 = F (X), weight 3 re-
duced divisors D1 = (U1, V1), D2 = (U2, V2) with
gcd(U1, U2) = 1

Output: The weight 3 reduced divisorD3 = (U3, V3) =
D1 +D2

1: Compute Ds ∼ −D3 such that Us = U1U2 from D1

and D2

2: Compute Dt ∼ D3 such that deg Ut = 4 from Ds

3: Compute D3 from Dt

Algorithm 1: Harley addition algorithm on genus 3
HEC for the most frequent case

for the other cases. Therefore we will consider only the
most frequent cases hereafter.

Algorithm 1 shows an overview of the Harley algo-
rithm on genus 3 hyperelliptic curves for the most fre-
quent case of addition D3 = D1 +D2.

Step 1 in Algorithm 1 is called composition part and
Step 2 to 3 reduction part. The composition part is
accomplished by using Chinese remainder theorem for
polynomials and, in doubling, Newton’s iteration is used
instead of Chinese remainder theorem. Unlike for genus
2 hyperelliptic curves, the reduction part needs 2 steps
for genus 3 hyperelliptic curves. The reduction part of
the doubling is the same as the addition. In practice,
Steps 1 and 2 are computed simultaneously and all de-
tailed algorithm is written down into arithmetic over the
definition fields. Moreover the multiplication and the
inversion costs are reduced by using Karatsuba’s multi-
plication [KO63] and Montgomery’s multiple inversion
technique [Coh93, Algorithm 10.3.4] respectively. In ad-
dition, [PWGP03] reduces the multiplication costs by
applying Bézout’s determinant to the resultant compu-
tations.

4 Improvements of the algorithm
This section shows improvements of the Harley algo-
rithm on genus 3 hyperelliptic curves under the stan-
dard assumption A ¿ M ¿ I.

The essentials of the improvements are the following
3 points:

1. Using Toom’s multiplication
2. Using virtual polynomial multiplication
3. Refining the details

The following discusses on using Toom’s multiplication
and virtual polynomial multiplication.
4.1 Toom’s multiplication
Toom’s multiplication is known as an efficient multipli-
cation algorithm for high-degree polynomials [Too63,
Ber01]. This algorithm is generally inefficient for low-
degree polynomials such as appeared in the Harley al-
gorithm. However, in certain cases of low-degree poly-
nomial multiplication, the cost of Toom’s multiplica-
tion is smaller than Karatsuba’s one. For example, a
multiplication of a degree 2 polynomial and a degree 1
polynomial can be done within 4M by Toom’s multi-
plication as the following procedure in stead of 5M by
Karatsuba’s one.

Input: R = r2X
2 + r1X + r0, S = s1X + s0

Output: T = t3X
3 + t2X

2 + t1X + t0 = RS
1: w1 = (r2 + r1 + r0)(s1 + s0)
2: w2 = (r2 − r1 + r0)(−s1 + s0)
3: t0 = r0s0

4: t3 = r2s1

5: t1 = (−2t3 + w1 − w2)/2
6: t2 = (−2t0 + w1 + w2)/2

Toom’s multiplication is effective for at least 2 places
in both the addition and the doubling procedure of the
algorithm.



4.2 Virtual polynomial multiplication
There is a lot of “multiply-and-add” operations in the
Harley algorithm on genus 3 hyperelliptic curves. For
example, if there exist sequences such that

· · ·+ s1z4 + · · · ,

· · ·+ s1z3 + s0z4 + · · · ,

· · ·+ s0z3 + · · · ,

then these can be regarded as the polynomial multipli-
cation (s1X + s0)(z4X + z3) and Karatsuba’s multipli-
cation is applicable. Therefore their computations can
be done within 3M instead of 4M .

This trick is effective for at least 2 places in the ad-
dition procedure of the algorithm.
4.3 Results
Tables 5 and 6 show the addition procedure and the
doubling procedure of the proposed algorithm respec-
tively. In these tables, “(Toom)” and “(Karatsuba)”
denote the step using Toom’s and Karatsuba’s multi-
plication respectively. The proposed algorithm takes
I + 70M + 113A for an addition and I + 71M + 107A
for a doubling respectively.

In practical usage of genus 3 hyperelliptic curve
cryptosystems, the assumption used here, i.e. A ¿
M ¿ I, is not always satisfied. In the case, i.e. A 6¿ M
case, it seems to be more efficient that Karatsuba’s one
is used instead of Toom’s multiplication, moreover, the
classical one is used instead of both Toom’s and Karat-
suba’s multiplication. These algorithms are easily ob-
tained from Tables 5 and 6. Consequently we obtain 3
algorithms which can be adjusted to various platforms.
The costs for the proposed algorithms and the previous
works appear in Table 1.

Obviously, which algorithm is the fastest depends on
M/A. Therefore we show the fastest algorithm for the
addition and the doubling with respect to M/A in Table
2.

Note that many other variations of the algorithm can
be obtained by partially using another method for each
polynomial multiplication in Tables 5 and 6.

5 Implementation on a 64-bit CPU
We implement the proposed algorithms on Alpha EV68,
which is known as a standard 64-bit CPU. The im-
plementation uses Compaq C++ with inline assembler.
The inline assembler is only used for the umulh instruc-
tion and the cttz instruction.

The following discusses
1. Choice of the definition field

Addition Doubling
Previous works

[KGM+02] I + 81M + 125A I + 74M + 125A
[PWGP03] I + 76M + 95A I + 75M + 97A
This work

Toom I + 70M + 113A I + 71M + 107A
Karatsuba I + 72M + 111A I + 73M + 101A
Classical I + 79M + 83A I + 78M + 83A

Table 1: Results and comparison of the addition algo-
rithms on genus 3 hyperelliptic curves. “Toom” denotes
the algorithm shown in Tables 5 and 6, “Karatsuba”
the algorithm without Toom’s multiplication, “Classi-
cal” the algorithm used only the classical multiplication.

2. Arithmetic over the definition field
for 64-bit CPUs and shows implementation results.
5.1 Definition field
Most of recent CPUs including Alpha EV68 is able to
multiply (half-)word-size integers fast. Therefore using
a prime finite field Fp as the definition field is efficient in
order to make the most of this multiplication capability.

On the other hand, the most efficient attack against
genus 3 hyperelliptic curve cryptosystems over Fp is
Thériault’s improvement [Thé03] of Gaudry’s attack
[Gau00] and its complexity is O(p10/7). Therefore a
56-bit field is enough for the definition field in order to
carry out the same security as a 160-bit elliptic curve
cryptosystem.

It is known that choosing a Mersenne prime as p
leads to fast Fp-arithmetic [BP98, AHK00] and the only
Mersenne prime from 56- to 64-bit is 261−1, so that we
choose p = 261 − 1 for our implementation.
5.2 Arithmetic over the definition field
The implementation of Fp-arithmetic is basically due
to [BP98, AHK00]. However certain arithmetic can be
improved to take the properties of both p = 261−1 and
the Harley algorithm on genus 3 hyperelliptic curves
into account. Therefore the following discusses the
Fp-arithmetic suitable for genus 3 hyperelliptic curve
cryptosystems using the property of p = 261 − 1.

Note that the symbol “&” denotes the “bit-wise and”
operation in the algorithms described below.
Addition Addition algorithm over Fp is not always
implemented with a lot of care. Because the condi-
tion A ¿ M is satisfied in most of the public-key
cryptosystems implementation. However implementa-
tion of genus 3 hyperelliptic curve cryptosystems is able
to make the most of the multiplication capability of
CPUs as described above, so that it is expected that
M is small and M/A for genus 3 hyperelliptic curve
cryptosystems are smaller than usual public-key crypto-
systems. Therefore we must pay attention to the imple-
mentation of addition over Fp.

An addition procedure consists of two parts, i.e. an
integer addition and a reduction modulo p. The re-
duction usually needs larger cost than the integer ad-
dition. However an efficient reduction procedure can
be obtained from the properties of p = 261 − 1. The
following shows the addition algorithm over Fp used in
our implementation.

Input: a, b ∈ [0, p− 1]
Output: c ∈ [0, p− 1] such that c ≡ a + b mod p
1: w = a + b + 1
2: c = bw/261c+ (w&p)− 1

This algorithm reduces the cost for the reduction.
Moreover this reduction trick makes multiple addition

M/A ≤ 3.2 3.3 3.4 ≥ 3.5
Addition Classical Toom
Doubling Classical Toom

Table 2: The fastest algorithm with respect to M/A.



efficiently. The following example shows an algorithm
for multiple addition of 4 elements.

Input: a, b, c, d ∈ [0, p− 1]
Output: c ∈ [0, p−1] such that c ≡ a+b+c+d mod p
1: w = a + b + c + d + 3
2: c = bw/261c+ (w&p)− 3

Because there are many multiple addition in the
Harley algorithm on genus 3 hyperelliptic curves, such
kind of algorithm is efficient for speed-up the Harley al-
gorithm. Moreover it is expected that these algorithms
bring more efficient implementation on recent CPUs be-
cause these have a number of ALUs usually.
Multiplication The multiplication algorithm used in
our implementation is basically due to [BP98]. In addi-
tion, to take 64-bit word boundaries into consideration,
more efficient algorithm can be obtained. Moreover a
reduction trick similar to the addition’s one can be also
applicable. The following shows the multiplication al-
gorithm used in our implementation.

Input: a, b ∈ [0, p− 1]
Output: c ∈ [0, p− 1] such that c ≡ ab mod p
1: w = bmulq(23a, b)/23c
2: w = w + umulh(23a, b)
3: c = bw/261c+ (w&p)

In the algorithm, mulq(a, b) (umulh(a, b)) denotes the
function returns the low-order 64 bits (resp. the high-
order 64 bits) of ab for 64-bit unsigned integers a, b.
Inversion As efficient inversion algorithm for single-
precision arithmetic, there exist extended Euclidean
algorithm (EGCD), extended binary GCD algorithm
(EBGCD), and (p − 2)-powering (p − 2 method). We
implemented each algorithm in order to decide which
algorithm should be used and an experimental result
shows the cost for EGCD > the cost for p − 2 method
≈ 69M > the cost for EBGCD, so that we use EBGCD
for the inversion.

The dominant part of the EBGCD is the “while-loop”
shown as follows.

while t2 is even do
if t1 is odd then

t1 = t1 + p
t1 = bt1/2c
t2 = bt2/2c

This loop is called many times in an inversion. However
the loop can be canceled using a property of p = 261−1
as follows.

w = cttz(t2)
t1 = bt1/2wc+ 261−w(t1&(2w − 1))
t2 = bt2/2wc

In the above procedure, cttz(a) denotes the function
returns the position of the first bit to be “1” from the
LSB to regard the bit-position of the LSB as 0. We use
this trick in the inversion computation.
Arithmetic of multiple elements The Harley al-
gorithm on genus 3 hyperelliptic curves needs not only

multiple addition but also various arithmetic of multiple
elements. The reduction trick used in the addition can
be applied for these arithmetic. Therefore we make all
the function that needs only at most 1 reduction with
respect to the arithmetic appeared in the proposed al-
gorithms. Table 3 shows the Fp-arithmetic functions
used in our implementation.
5.3 Implementation results
Table 4 shows implementation results. In the table,
each of “Toom,” “Karatsuba,” “Classical” denotes the
same algorithm shown in Table 1.

We use the signed sliding-window algorithm [BSS99,
Algorithm IV.7] of the window-size 5 for the scalar
multiplication and 160-bit random integers for the
scalars, moreover, our implementation uses NTL/GMP
[Sho03, Fou03] for the Cantor algorithm and the sliding-
window algorithm. Each timing shows the average of
every 1,000,000 operations on 100 random curves with
F to be irreducible.

The results show the algorithm without both Toom’s
and Karatsuba’s multiplication is the fastest. In prac-
tice, to regard an instruction as a step, the critical
passes of the addition and the multiplication over Fp

are 7 steps and 9 steps and therefore the assumption
A ¿ M is obviously not satisfied. It is expected that
such property increases with speed-up of the definition
field arithmetic.

6 Conclusion
This paper showed improvements of the Harley algo-
rithm on genus 3 hyperelliptic curves and obtained 3
algorithms which take I + 70M (I + 71M) for an addi-
tion (resp. a doubling), I + 72M (resp. I + 73M), and
I + 79M (resp. I + 78M) respectively. Under the stan-
dard assumptions, the cost I + 70M (I + 71M) for an
addition (resp. a doubling) is the best possible as far as
we know.

Moreover this paper showed implementation results
of the proposed algorithms on the 64-bit CPU Alpha
EV68 1.25GHz. The implementation results show that
an addition, a doubling, and a 160-bit scalar multipli-
cation can be done within 888ns, 875ns, and 176µs re-
spectively. This result is the fastest one for hyperelliptic
curve addition implementation as far as we know.

−a 2a a/2
a + b a− b 1/a
a2 ab a + b + c

2a + b a + b + c + d ab + c
a2 + b ab + c + d a2 + b + c
a2 + 2b ab + c + d + e ab + cd

ab + cd + e ab + cd + e + f 2ab + cd
2ab + cd + e a2 + 2bc 2(ab + c) + de
ab + cd + ef ab + cd + ef + g 2ab + cd + ef

Table 3: Implemented Fp-arithmetic. a, . . . , g denote
any elements in Fp or F×p for the inverse.

Addition Doubling Scalar mul.
Toom 930ns 933ns 187µs

Karatsuba 920ns 897ns 181µs
Classical 888ns 875ns 176µs

Table 4: Performance results on Alpha EV68 1.25GHz



In. Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;

Reduced divisors D1 = (U1, V1) and D2 = (U2, V2),

U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10,

U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Out. The reduced divisor D3 = (U3, V3) = D1 +D2, U3 = X3 + u32X2 + u31X + u30, V3 = v32X2 + v31X + v30;

Step Procedure Cost

1 Compute the resultant r of U1 and U2: 14M + 12A

t1 = u11u20 − u10u21; t2 = u12u20 − u10u22; t3 = u20 − u10; t4 = u21 − u11; t5 = u22 − u12;

t6 = t24; t7 = t3t4; t8 = u12u21 − u11u22 + t3; t9 = t23 − t1t5; t10 = t2t5 − t7; r = t8t9 + t2(t10 − t7) + t1t6;

2 If r = 0 then call the Cantor algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/U1 mod U2: 4M + 4A

i2 = t5t8 − t6; i1 = u22i2 − t10; i0 = u21i2 − (u22t10 + t9);

4 Compute S′ = s′2X2 + s′1X + s′0 = rS ≡ (V2 − V1)I mod U2 (Karatsuba, Toom): 10M + 31A

t2 = v10 − v20; t3 = v11 − v21; t4 = v12 − v22; t5 = t3i1; t6 = t2i0; t7 = t4i2; t8 = u22t7;

t1 = t5 + t7 + t8 − (t3 + t4)(i1 + i2); t3 = u20t1; t4 = u20 + u22; t9 = (t4 + u21)(t1 − t7);

t10 = (t4 − u21)(t1 + t7); s′0 = −(t3 + t6); s′2 = t7 − (s′0 + t5 + (t2 + t4)(i0 + i2) + (t9 + t10)/2);

s′1 = t5 + t6 + (t10 − t9)/2− (t8 + (t2 + t3)(i0 + i1));

5 If s′2 = 0 then call the Cantor algorithm –

6 Compute S, w and wi = 1/w s.t. wS = S′/r and S is monic: I + 7M

t1 = (rs′2)
−1; t2 = rt1; w = t1s′22 ; wi = rt2; s0 = t2s′0; s1 = t2s′1;

7 Compute Z = X5 + z4X4 + z3X3 + z2X2 + z1X + z0 = SU1 (Toom): 4M + 15A

t6 = s0 + s1; t1 = u10 + u12; t2 = t6(t1 + u11); t3 = (t1 − u11)(s0 − s1); t4 = u12s1;

z0 = u10s0; z1 = (t2 − t3)/2− t4; z2 = (t2 + t3)/2− z0 + u10; z3 = u11 + s0 + t4; z4 = u12 + s1;

8 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = (S(Z + 2wiV1)− w2
i ((F − V 2

1 )/U1))/U2 (Karatsuba): 13M + 26A

t1 = s0z3; t2 = (u22 + u21)(ut3 + ut2); t3 = u21ut2; t4 = t1 − t3; ut3 = z4 + s1 − u22; t5 = s1z4 − u22ut3;

ut2 = z3 + s0 + t5 − u21; ut1 = z2 + t6(z4 + z3) + wi(2v12 − wi)− (t5 + t2 + t4 + u20);

ut0 = z1 + t4 + s1z2 + wi(2(v11 + s1v12) + wiu12)− (u22ut1 + u20ut3);

9 Compute Vt = vt2X2 + vt1X + vt0 ≡ wZ + V1 mod Ut: 8M + 11A

t1 = ut3 − z4; vt0 = w(t1ut0 + z0) + v10; vt1 = w(t1ut1 + z1 − ut0) + v11;

vt2 = w(t1ut2 + z2 − ut1) + v12; vt3 = w(t1ut3 + z3 − ut2);

10 Compute U3 = X3 + u32X2 + u31X + u30 = (F − V 2
t )/Ut: 7M + 11A

t1 = 2vt3;

u32 = −(ut3 + v2
t3); u31 = f5 − (ut2 + u32ut3 + t1vt2); u30 = f4 − (ut1 + v2

t2 + u32ut2 + u31ut3 + t1vt1);

11 Compute V3 = v32X2 + v31X + v30 ≡ Vt mod U3: 3M + 3A

v32 = vt2 − u32vt3; v31 = vt1 − u31vt3; v30 = vt0 − u30vt3;

Total I + 70M + 113A

Table 5: Explicit formula for addition on genus 3 HEC (most frequent case)

In. Genus 3 HEC C : Y 2 = F (X), F = X7 + f5X5 + f4X4 + f3X3 + f2X2 + f1X + f0;

A reduced divisor D1 = (U1, V1), U1 = X3 + u12X2 + u11X + u10, V1 = v12X2 + v11X + v10;

Out. The reduced divisor D2 = (U2, V2) = 2D1, U2 = X3 + u22X2 + u21X + u20, V2 = v22X2 + v21X + v20;

Step Procedure Cost

1 Compute the resultant r of U1 and V1: 14M + 9A

t1 = u11v10 − u10v11; t2 = u12v10 − u10v12; t3 = v2
11; t4 = v11v10; t5 = v10 + u12v11 − u11v12;

t6 = v2
10 − v12t1; t7 = v12t2 − t4; r = t5t6 + t2(t7 − t4) + t1t3;

2 If r = 0 then call the Cantor Algorithm –

3 Compute the pseudo-inverse I = i2X2 + i1X + i0 ≡ r/V1 mod U1: 4M + 4A

i2 = t3 − v12t5; i1 = u12i2 + t7; i0 = u11i2 + u12t7 + t6;

4 Compute Z = z2X2 + z1X + z0 ≡ (F − V 2
1 )/U1 mod U1: 7M + 18A

t1 = 2u10; t2 = 2u11; t3 = u2
12; t4 = f4 − (t1 + v2

12); t5 = f5 + t3 − t2; t10 = 2v12; z2 = t5 + 2t3;

z1 = u12(t2 − t5) + t4; z0 = f3 + t3(t5 − u11) + u12(t1 − t4) + u11(u11 − f5)− t10v11;

5 Compute S′ = s′2X2 + s′1X + s′0 = 2rS ≡ ZI mod U1 (Karatsuba, Toom): 10M + 28A

t1 = i1z1; t2 = i0z0; t3 = i2z2; t4 = u12t3; t5 = (i2 + i1)(z2 + z1)− (t1 + t3 + t4); t6 = u10t5;

t7 = u10 + u12; t8 = t7 + u11; t9 = t7 − u11; t7 = t8(t3 + t5); t11 = t9(t5 − t3);

s′2 = t1 + t6 + (i2 + i0)(z2 + z0)− (t2 + t3 + (t7 + t11)/2);

s′1 = t4 + (i0 + i1)(z1 + z0) + (t11 − t7)/2− (t1 + t2); s′0 = t2 − t6;

6 If s′2 = 0 then call the Cantor Algorithm –

7 Compute S, w and wi = 1/w s.t. wS = S′/(2r) and S is monic: I + 7M + A

t1 = 2r; t2 = (t1s′2)
−1; t3 = t1t2; w = t2s′22 ; wi = t1t3; s0 = t3s′0; s1 = t3s′1;

8 Compute G = X5 + g4X4 + g3X3 + g2X2 + g1X + g0 = SU1 (Toom): 4M + 12A

t1 = t8(s1 + s0); t2 = t9(s0 − s1); t3 = u12s1;

g0 = u10s0; g1 = (t1 − t2)/2− t3; g2 = u10 + (t1 + t2)/2− g0; g3 = t3 + u11 + s0; g4 = u12 + s1;

9 Compute Ut = X4 + ut3X3 + ut2X2 + ut1X + ut0 = ((G + wiV1)
2 − w2

i F )/U2
1 : 7M + 10A

ut3 = 2s1; ut2 = s2
1 + 2s0; ut1 = ut3s0 + wi(t10 − wi); ut0 = s2

0 + 2wi((s1 − u12)v12 + v11 + wiu12);

10 Compute Vt = vt3X3 + vt2X2 + vt1X + vt0 ≡ wG + V1 mod Ut: 8M + 11A

t1 = ut3 − g4; vt0 = w(t1ut0 + g0) + v10; vt1 = w(t1ut1 + g1 − ut0) + v11;

vt2 = w(t1ut2 + g2 − ut1) + v12; vt3 = w(t1ut3 + g3 − ut2);

11 Compute U2 = X3 + u22X2 + u21X + u20 = (F − V 2
t )/Ut: 7M + 11A

t1 = 2vt3;

u22 = −(ut3 + v2
t3); u21 = f5 − (ut2 + u22ut3 + t1vt2); u20 = f4 − (ut1 + v2

t2 + u22ut2 + u21ut3 + t1vt1);

12 Compute V2 = v22X2 + v21X + v20 ≡ Vt mod U2 (Karatsuba): 3M + 3A

v22 = vt2 − u22vt3; v21 = vt1 − u21vt3; v20 = vt0 − u20vt3;

Total I + 71M + 107A

Table 6: Explicit formula for doubling on genus 3 HEC (most frequent case)
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Improvements of addition algorithm on genus 3 hyperelliptic curves

and their implementations

— Update and Eratta —
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January 25, 2004

Update We made further improvements in our implementation, so please replace Table 4 by the following.

Addition Doubling Scalar mul.
Toom 919ns 916ns 180µs

Karatsuba 920ns 897ns 177µs
Classical 888ns 875ns 172µs

Table 4: Performance results on Alpha EV68 1.25GHz

Eratta Please replace Step 4 in Table 5 by the following.

Step Procedure Cost

4 Compute S′ = s′2X2 + s′1X + s′0 = rS ≡ (V2 − V1)I mod U2 (Karatsuba, Toom): 10M + 31A

t1 = v10 − v20; t2 = v11 − v21; t3 = v12 − v22; t4 = t2i1; t5 = t1i0; t6 = t3i2; t7 = u22t6;

t8 = t4 + t6 + t7 − (t2 + t3)(i1 + i2); t9 = u20 + u22; t10 = (t9 + u21)(t8 − t6);

t9 = (t9 − u21)(t8 + t6); s′0 = −(u20t8 + t5); s′2 = t6 − (s′0 + t4 + (t1 + t3)(i0 + i2) + (t10 + t9)/2);

s′1 = t4 + t5 + (t9 − t10)/2− (t7 + (t1 + t2)(i0 + i1));

Table 5: Explicit formula for addition on genus 3 HEC (most frequent case)


