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SUMMARY This paper proposes a Weil descent attack against elliptic
curve cryptosystems over quartic extension fields. The scenario of the at-
tack is as follows: First, one reduces a DLP on a Weierstrass form over
the quartic extention of a finite field k to a DLP on a special form, called
Scholten form, over the same field. Second, one reduces the DLP on
the Scholten form to a DLP on a genus two hyperelliptic curve over the
quadratic extension of k. Then, one reduces the DLP on the hyperelliptic
curve to one on a Cab model over k. Finally, one obtains the discrete-log of
original DLP by applying the Gaudry method to the DLP on the Cab model.
In order to carry out the scenario, this paper shows that many of elliptic
curve discrete-log problems over quartic extension fields of odd character-
istics are reduced to genus two hyperelliptic curve discrete-log problems
over quadratic extension fields, and that almost all of the genus two hyper-
elliptic curve discrete-log problems over quadratic extension fields of odd
characteristics come under Weil descent attack. This means that many of
elliptic curve cryptosystems over quartic extension fields of odd character-
istics can be attacked uniformly.
key words: elliptic curve cryptosystems, hyperelliptic curve cryptosystems,
Weil descent attack, Scholten form, Cab curves

1. Introduction

The elliptic curve cryptosystem is one of the most important
public key cryptosystems. There have been found several at-
tack methods for elliptic curve cryptosystems, such as MOV
attack [17], Frey-Rück attack [11], SSSA attack [21], [23],
[24] and Weil descent attack. Among them, the most prob-
lematic attack is Weil descent attack, because the class of
the elliptic curves for which Weil descent attack efficiently
works has not been determined yet.

Weil descent attack, of which idea was shown by Frey
and Gangl [9], aims to break DLP on algebraic curve over
composite fields. For a given algebraic curve A over a com-
posite field K, by using the technique of scalar restriction,
we construct an algebraic curve C over a smaller field k to
cover the curve A. Doing this, we can reduce DLP on A to
DLP on C. Since the definition field k of C is smaller than
that K of A, Gaudry method [14] could be more effective
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against DLP on C than against A, provided that genus of C
is small enough.

In the first place, Gaudry, Hess and Smart [15] showed
that some of (DLP on) elliptic curve of characteristic two
are really attacked by Weil descent. Later, it was shown, by
Galbraith [13] and [2], that some of hyperelliptic curve of
characteristic two and some of elliptic curve of characteris-
tic three are also attacked, respectively. Moreover Diem [7]
showed the existence of (hyper-)elliptic curves of general
odd characteristics which can be attacked by Weil descent.
However, (hyper-)elliptic curves attacked by those are very
exceptional ones.

Besides Thériault [26] proposed Weil descent attack for
some special hyperelliptic curves defined over Fq2 or Fq3 . On
the other hand, Scholten [22] showed that an elliptic curve
of a special form over the quadratic extension of a finite field
k is covered by a hyperelliptic curve over k and also elliptic
curves with full rational two-torsions can be represented by
that form.

This paper deals with an attack against elliptic curve
cryptosystems over quartic extension fields. The scenario of
the attack proposed in this paper is as follows: First, one
reduces a DLP on a Weierstrass form over the quartic exten-
tion of a finite field k to a DLP on a Scholten form over the
same field. Second, one reduces the DLP on the Scholten
form to a DLP on a genus two hyperelliptic curve over the
quadratic extension of k. Then, one reduces the DLP on the
hyperelliptic curve to one on a Cab model over k. Finally,
one obtains the discrete-log of the original DLP by applying
the Gaudry method to the DLP on the Cab model.

In order to carry out the scenario, first this paper shows
that many of DLP on elliptic curves over quartic extension
fields are reduced to those on genus two hyperelliptic curves
over quadratic extension fields. Corresponding result of this
part is obtained for elliptic curves with full two-torsions by
Scholten [22]. However, we concern ourselves mainly about
elliptic curves with no rational two-torsions due to crypto-
graphically requirement and we need more explicit formula
for reductions in order to deal with DLPs on them. So, this
paper prepares two independent sections to describe explicit
reduction, which is not stated in [22], from elliptic curve
cryptosystems with no two-torsions over quartic extension
fields to hyperelliptic curve ones over quadratic extension
fields. Second, this paper shows in the explicit construc-
tive way that almost all of the genus two hyperelliptic curve
cryptosystems over quadratic extension fields of odd char-
acteristics come under Weil descent attack. This means that
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many of elliptic curve cryptosystems over quartic extension
fields of odd characteristics can be attacked by Weil descent
uniformly.

The organization of this paper is as follows: Sect. 2 in-
troduces Scholten form of an elliptic curve over a quartic ex-
tension field, and shows the explicit reduction formula from
the Scholten form to the Jacobian of a genus two hyper-
elliptic curve over a quadratic extension field. Section 3
shows the conditions for an elliptic curve in Weierstrass
form to be transformed into Scholten form and the explicit
reduction formula from Weierstrass form to Scholten form.
Then Sect. 4 explicitly reduces DLP on a genus two hyper-
elliptic curve over a quadratic extension to DLP on a Cab

model in order to apply Gaudry method. Finally, Sect. 5
shows examples of the proposed attack which include one
for a 160-bit DLP.

2. A Weil Descent of DLP on Scholten Form

Let k = Fq be a finite field of characteristic different from
two. Let kd denote the d-th degree extension of k. An elliptic
curve En over k4 is called Scholten form if it is defined by
an equation

y2 = ax3 + bx2 + bq2
x + aq2

with a, b ∈ k4. Scholten [22] showed that the scalar restric-
tion Πk4

k2
En of Scholten form En is isomorphic to Jacobian of

a genus 2 hyperelliptic curve

H : Y2 = a(X − c)6 + b(X − c)4(X − cq2
)

+ bq2
(X − c)2(X − cq2

)4 + aq2
(X − cq2

)6

over k2, where c denotes an element of k4 \ k2, and gave a
way to construct secure genus two hyperelliptic curve.

Our Weil descent attack needs a efficiently computable
map from En(k2) to the Jacobian of H over k4, so that this
section presents one.

A covering map Ψ from hyperelliptic curve H to
Scholten form En is given by

(x, y) = Ψ(X, Y) =

(( X − c

X − cq2

)2

,
Y

(X − cq2 )3

)
. (1)

Remark 1. The hyperelliptic curve H dose not depend on
the choice of c ∈ k4 \ k2. In fact, H0 : Y2 = aX6 + bX4 +

bq2
X2 + aq2

is isomorphic to H via a map

(X, Y) �−→
(

X − c

X − cq2 ,
Y

(X − cq2 )3

)
.

For a k4-rational point P on Scholten form En, let
{Q1,Q2} be an inverse image of P by the covering map
Ψ : H → En. The covering map Ψ induces a homomor-
phism Ψ∗ from En(k4) to the Jacobian JacH(k4) of H over
k4: Ψ∗ : P ∈ En(k4) �→ Q1 + Q2 − ∞1 − ∞2 ∈ JacH(k4).
Here, ∞1,∞2 denote two points of H at infinity. By (1), we
see that X-coordinates of Q1, Q2 are roots of

(X − c)2 − x(P)(X − cq2
)2 = 0, (2)

where x(P) denotes the x-coordinate of the point P.
We take a composition of Ψ∗ with trace map T :∑

i Qi ∈ JacH(k4) �→ ∑
i Qi + Qq2

i ∈ JacH(k2) to get a ho-
momorphism T · Ψ∗ from En(k4) to Jacobian JacH(k2) over
k2.

Lemma 1. Let P be a k4-rational point of Scholten form
En. If the order of P is not less than 2q2 + 2, then we have
T ·Ψ∗(P) � 0.

Proof. We only have to show that the number of P ∈ En(k4)
satisfying T ·Ψ∗(P) = 0 is at most 2q2 + 1. Let x(P) � 1,∞.
Let {Q1,Q2} be an inverse image of P by Ψ : H → En. Let
A(X) = (X − c)2 + (X − cq2

)2 and B(X) = (X − c)2 − (X −
cq2

)2. Since X-coordinates of Q1,Q2 satisfies (2), 1
2 (A(X) −

b+1
b B(X)) = 0 with b = (−1 + x(P))/2. Now we assume that

T · Ψ∗(P) = 0. Then, since Ψ∗(P) = −Ψ∗(P)q2
, the monic

equation for X-coordinates of Q1, Q2 and the one for Qq2

1 ,

Qq2

2 must be identical. Since A(X), B(X) is transferred to
A(X),−B(X) respectively by q2-th Frobenius automorphism,

we see
(

b+1
b

)q2

= − b+1
b . Since the number of such b (� 0) is

at most q2 − 1, the number of P satisfying T · Ψ∗(P) = 0 is
at most 2q2 − 2. �

Lemma 1 shows that the homomorphism T · Ψ∗ from
En(k4) to JacH(k2) is not trivial. So, the homomorphism re-
duces DLP on En(k4) to DLP on JacH(k2).

3. Transformation of Weierstrass Form

This section considers necessary and sufficient conditions
for an elliptic curve over k4 in Weierstrass form to be trans-
formed into Scholten form over k4. In general, an isomor-
phism between elliptic curves is given by a linear transfor-
mation x → Ax + B, y → Cy + Dx + E with constants
A, B,C,D. If Weierstrass form Ew : y2 = f (x) over k4 is
transformed into Scholten form En : y2 = F(x) over k4 by
transformation x → Ax + B, y → Cy + Dx + E over k4,
it is obvious that D = E = 0 and F(x) = C−2 f (Ax + B).
Scholten [22] has already shown that an elliptic curve with
full two-torsions can be transformed into Scholten form, and
observed that an elliptic curve with no two-torsions can be
also transformed experimentally. So, this section only con-
siders necessary and sufficient conditions for Weierstrass
form Ew : y2 = f (x) to be transformed into Scholten form
En : y2 = F(x) with f (x) being irreducible over k4, which is
a cryptographically common setting. Moreover, this section
shows a map from Ew to En which is needed for our attack.

Suppose that Weierstrass form Ew : y2 = f (x) is trans-
formed into Scholten form En : y2 = F(x) by transformation
x → Ax + B, y → Cy over k4. Since F(x) = C−2 f (Ax + B),
F(x) is also irreducible over k4. Let δ be a root of F(x) =
ax3 + bx2 + bq2

x + aq2
, then δ−q2

is also a root of F(x). This
means that δ−q2

equals δ or δq
4

or δq
8
. However, if δ−q2

= δ,
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then δq
4−1 = (δq

2+1)q2−1 = 1, and δ ∈ k4, which contra-
dicts the irreducibility of F(x). Similarly, if δ−q2

= δq
4
, then

δ−1 = δq
2

which also means δ ∈ k4. Therefore, we must
have δ−q2

= δq
8
, i.e. δ1+q6

= 1. Summarizing, we have the
following proposition.

Proposition 1. Suppose that a monic cubic polynomial f (x)
is irreducible over k4, and that Weierstrass form Ew : y2 =

f (x) over k4 is isomorphic to Scholten form En : y2 = F(x)
over k4. Then, for a root γ for f (x), there are A ∈ k×4 and

B ∈ k4 satisfying γ = Aδ + B and δ1+q6
= 1.

The contrary also holds:

Proposition 2. Let f (x) be an irreducible monic cubic poly-
nomial over k4. Suppose that there are A ∈ k×4 and B ∈ k4

satisfying γ = Aδ + B and δ1+q6
= 1 for a root γ of f (x). Let

a = −A2−q2
δ1+q4−q2

, b = −A(δ+δq
4
+δ−q2

). Then, Weierstrass
form Ew : y2 = f (x) over k4 is transformed into Scholten
form En : y2 = ax3 + bx2 + bq2

x+ aq2
over k4 by transforma-

tion y→ ay, x→ ax + B over k4.

Proof. Applying transformation y → y, x → x + B, we can
suppose B = 0. We have y2 = x3 + bx2 + abq2

x + aq2
a2.

This is transformed into En by transformation y → ay, x →
ax. �

Next, for a root γ of a monic cubic irreducible polyno-
mial f (x) over k4, we examine the condition of Proposition
2: ∃A ∈ k×4 , B ∈ k4, satisfying γ = Aδ + B, δ1+q6

= 1. For
γ ∈ k12, let d(γ) = (γq2+q4−γq2+1)+(γq6+q8−γq6+q4

)+(γq10+1−
γq10+q8

).

Lemma 2. For γ ∈ k12 \ k4, we have d(γ) � 0 iff γ satisfies
the condition of Proposition 2. In such a case, A, B in the
condition of Proposition 2 are given by

B = d(γ)−1(γ(γq6+q8 − γq4+q6
) +

γq4
(γq10+1 − γq8+q10

) + γq8
(γq2+q4 − γ1+q2

)),

A =
{ √

C if C∈k×2 2

√−C if C�k×2
2 , where C = Nk12 |k6 (γ − B).

Proof. (⇒) Suppose d(γ) � 0. Since Nk4 |k2 is surjective, we
only need to show (γ − B)1+q6 ∈ k2 for some B ∈ k4 (For
A1+q2

= A1+q6
= (γ − B)1+q6

, δ = (γ − B)/A). For the sake,
we see an equation for B:

(γ − B)q2
(γq6 − Bq6

)q2 − (γ − B)(γq6 − Bq6
) = 0 (3)

has a solution in k4. By letting Bq4
= B and collecting terms

of B, (3) is transformed into

(γq2 − γq6
)B + (γq8 − γ)Bq2 − γq2+q8

+ γ1+q6
= 0. (4)

By applying q2-th Frobenius automorphism,

(γq4 − γq8
)Bq2
+ (γq10 − γq2

)B− γq4+q10
+ γq2+q8

= 0. (5)

Equations (4) and (5) are written with matrices as

(
γq2−γq6

γq8−γ
γq10−γq2

γq4−γq8

) (
B

Bq2

)
=

(
−γ1+q6

+γq2+q8

−γq2+q8
+γq4+q10

)
. (6)

The determinant of the coefficient matrix is computed to be
(γq2+q4 − γ1+q2

)+ (γq6+q8 − γq6+q4
)+ (γ1+q10 − γq8+q10

) = d(γ).
Therefore, B = d(γ)−1(γ(γq6+q8 − γq4+q6

) + γq4
(γq10+1 −

γq8+q10
) + γq8

(γq2+q4 − γ1+q2
)). For this B we have B = Bq4

,
i.e., B ∈ k4.
(⇐) Suppose d(γ) = 0, i.e.

(γq2+q4 − γq2+1) + (γq6+q8 − γq6+q4
)+

(γq10+1 − γq10+q8
) = 0. (7)

If (γ − B)1+q6 ∈ k2 for some B ∈ k4, then (6) has a solution
B. Then, since the determinant of the coefficient matrix of
(6) is equal to d(γ) = 0, we must have

γq2 − γq6

γq10 − γq2 =
γq8 − γ
γq4 − γq8 =

γ1+q6 − γq2+q8

γq2+q8 − γq4+q10 .

So, γ1+q4+q6
+ γq4+q8+q10

+ γ1+q2+q8 − γ1+q4+q10 −
γq2+q4+q8 − γ1+q6+q8

= 0. By adding γq4
-times (7) to this

equation, (γq6 − γq2
)(γ − γq4

)(γq4 − γq8
) = 0. This implies

γ ∈ k4, which contradicts the assumption. �

From Propositions 1 and 2 and Lemma 2, we have

Theorem 1. Let f (x) be an irreducible monic cubic poly-
nomial over k4. Let γ be a root of f (x). The necessary and
sufficient condition for Weierstrass form y2 = f (x) to be iso-
morphic to Scholten form over k4 is that d(γ) � 0. More
precisely, in such a case, Weierstrass form Ew : y2 = f (x)
over k4 is transformed into Scholten form En : y2 = ax3 +

bx2 + bq2
x + aq2

over k4 by translation y → ay, x → ax + B
over k4 for a = −A2−q2

δ1+q4−q2
, b = −A(δ + δq

4
+ δ−q2

) with
A, B given in Lemma 2.

Next, we examine the condition d(γ) � 0.

Lemma 3. Let f (x) be an irreducible monic cubic polyno-
mial over k4. For Weierstrass form Ew : y2 = f (x) over
k4, the condition j(Ew) ∈ k2 is equivalent to the condition
that a root γ of f (x) is given by γ = Aα + B with some
A ∈ k×4 , B ∈ k4 and α ∈ k6.

Proof. (⇒) By the condition j(Ew) ∈ k2, for some trans-
formation y → Cy, x → Ax + B (C2 = A3) over k4,
the elliptic curve y2 = C−2 f (Ax + B) becomes an elliptic
curve y2 = (x − α)(x − αq2

)(x − αq4
) over k2, or its twist

y2 = (x − Dα)(x − Dαq2
)(x − Dαq4

) over k4 (D is a non-
square in k4). Then, we have γ = Aα + B or γ = ADα + B.
(⇐) Applying transformation x→ Ax+ B, y→ A

3
2 y over k8

for Ew : y2 = f (x) = (x − γ)(x − γq4
)(x − γq8

),

y2 = A−3(Ax + B − (Aα + B))(Ax + B

−(Aαq4
+ B))(Ax + B − (Aαq2

+ B))

= (x − α)(x − αq4
)(x − αq2

).

So, j(Ew) ∈ k2. �
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Proposition 3. Let f (x) be an irreducible monic cubic poly-
nomial over k4. Let γ be a root of f (x). If j(Ew) ∈ k2 for
Weierstrass form Ew : y2 = f (x), then we have d(γ) = 0.

Proof. By Lemma 3, there are some A ∈ k×4 , B ∈ k4 and
α ∈ k6 satisfying γ = Aα + B. By Lemma 2, we know
that d(γ) = 0 ⇔ d(γ − B) = 0. So, we can suppose B =
0, i.e. γ = Aα. Let d0(γ) = γq2+q4

+ γq6+q8
+ γq10+1, then

d(γ) = d0(γ) − d0(γ)q2
. So, we only have to show d0(γ) ∈

k2. By γ = Aα, d0(γ) = A1+q2
(αq2+q4

+ α1+q2
+ αq4+1) =

Nk4 |k2 (A)Tk6 |k2 (α1+q2
). �

When the characteristic of k is not three, we can show
the contrary:

Proposition 4. Suppose that the characteristic of k is dif-
ferent from three (or two). Let f (x) be an irreducible monic
cubic polynomial over k4. Let γ be a root of f (x). If
d(γ) = 0, then we have j(Ew) ∈ k2 for Weierstrass form
Ew : y2 = f (x).

Proof. We can suppose

γ + γq4
+ γq8

= 0, (8)

by letting γ = γ − 1
3 Tk12 |k4 (γ) if necessary. Note that d(γ)

remains to be zero by Lemma 2. It is sufficient to show
A := γ

γ+γq6 ∈ k4 by Lemma 3 (If γ + γq6
= Tk12 |k6 (γ) = 0, let

γ = aγ for some a ∈ k4). Since A − Aq4
=

γ1+q10−γq4+q6

(γ+γq6 )(γq4
+γq10 )

, it

is sufficient to show γ1+q10 − γq4+q6
= 0. By the assumption

d(γ) = 0,

(γq10+1 − γq6+q4
) + (γq2+q4 − γq10+q8

)+

(γq6+q8 − γq2+1) = 0. (9)

By using (8), γq2+q4 − γq10+q8
= γ1+q10 − γq4+q6

, and γq6+q8 −
γq2+1 = −γq4+q6

+ γ1+q10
. So, by (9), we see γ1+q10 − γq4+q6

=

0. �

To summarize foregoing arguments, for an irreducible
monic cubic polynomial f (x) over k4 and for its root γ, we
have

Ew : y2 = f (x) can be Scholten form
Prop. 1, 2⇐⇒ δ = Aγ + B, δ1+q6

= 1 (∃A ∈ k×4 , B ∈ k4)

Lemma 2⇐⇒ d(γ) � 0
Prop. 3, 4⇐⇒ j(Ew) � k2

Here, ⇐ on the last line is shown only when the character-
istic of k is not three.

4. A Weil Descent of DLP on Genus Two Hyperelliptic
Curves

This section shows that Weil descent attack is effective in al-
most all of the genus two hyperelliptic curve cryptosystems

(that is, those satisfying Assumption 1 shown later) over
quadratic extension field of odd characteristics.

Given a genus two hyperelliptic curve over a quadratic
extension field k2 of order q2, we construct an algebraic
curve of genus nine over the subfield k of order q by using
the technique of scalar restriction. We explicitly reduce DLP
on the hyperelliptic curve to DLP on the new curve, and ap-
ply a variant [1] of Gaudry method against Cab model of the
curve. It solves DLP on the Cab model over k in the amount
of computations O(q

9
5 ), moreover new variants of Gaudry

method solves in O(q
34
19 ) by [25], or O(q

17
9 ) by [16], [19].

Thus, DLP on genus two hyperelliptic curve over quadratic
extension field k2 can be solved by Weil descent attack in
the amount of computations less than O(q2) via Pollard’s ρ-
method. This means, with the results of previous sections,
that Weil descent attack is effective in many of the ellip-
tic curve cryptosystems over quartic extension fields of odd
characteristics.

Note that our method is expected to be more efficient,
if Diem’s index calculus method [8] for non-singular plane
curves is applicable instead of Gaudry method. However,
that scenario seems to be infeasible, because a projection of
our Cab model onto a plane has many singularities in gen-
eral.

Note also that Thériault [26] shows Weil descent at-
tack for some special hyperelliptic curves defined over k2,
which are defined by y2 = (x − a)h(x) with a ∈ k2 \ k and
h(x) ∈ k[x] (not in k2[x]). For those special hyperelliptic
curves, Thériault’s attack is more efficient than the attack
proposed in this section, even though the latter is applicable
to almost all hyperelliptic curves over k2. By incorporating
Thériault’s attack, it is possible to improve our method in
some special cases. However, taking into consideration the
aim of this paper that is to attack elliptic curves over quartic
extension fields k4 through hyperelliptic curves over k2, it
seems difficult to find and characterize the family of elliptic
curves over k4 corresponding to such special hyperelliptic
curves over k2 attacked by the method of [26]. Besides, an
elliptic curve of no two-torsions which is our main interest-
ing is not covered by Thériault’s curve, because Thériault’s
one is with at least one two-torsion.

4.1 Weil Descent of Hyperelliptic Curves and Their GHS-
Sections

Let H be a genus two hyperelliptic curve defined over k2 =

Fq2 which is the quadratic extension of k = Fq of character-
istic different from 2:

H : y2 = x6 + ax5 + bx4 + cx3 + dx2 + ex + f .

A scalar restriction Πk2/kH of H with respect to the ex-
tension k2/k is a two-dimensional algebraic variety defined
by the following two conjugate equations

y2
1 = x6

1 + ax5
1 + bx4

1 + cx3
1 + dx2

1 + ex1 + f ,

y2
2 = x6

2 + aqx5
1 + bqx4

2 + cqx3
2 + dqx2

2 + eqx2 + f q.
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Note that Πk2/kH is geometrically defined over k. Let σ de-
note q-th Frobenius automorphism of k2/k. σ can be ex-
tended to the automorphism of Πk2/kH by σ(x1) = x2 and
σ(y1) = y2.

For Weil descent attack, we should find an algebraic
curve D on Πk2/kH, which is defined over k and is of genus
as small as possible, and we reduce DLP on the hyper-
elliptic curve H to DLP on the curve D against which we
apply Gaudry method [14]. Since the complexity of Gaudry
method is O(g!) with respect to genus g, the genus of D
should be less than ten or around in the usual region of se-
curity parameters.

As seen above, in Weil descent attack, the choice of
the curve D over ΠK/kH is critical. In this paper, just as
in [13], [15], we let D be the intersection of Πk2/kH and a
hypersurface (x :=)x1 = x2, which we call “GHS-section.”
GHS-section D is an algebraic curve geometrically defined
over k by equations

y2
1 = x6 + ax5 + bx4 + cx3 + dx2 + ex + f , (10)

y2
2 = x6 + aqx5 + bqx4 + cqx3 + dqx2 + eqx + f q. (11)

Proposition 5. If F(x) := x6+ax5+bx4+cx3+dx2+ex+ f
does not contain any non-trivial factor over k, then GHS-
section D is a nonsingular affine curve.

Proof. Suppose D is a singular curve. Since Jacobian matrix
J of D is

J =
(

F′(x) 2y1 0
F̄′(x) 0 2y2

)

with F̄ := σ(F), both y1 and y2 must be zero on singular
points. So, F and F̄ contain non-trivial irreducible common
factor a over k2. Then, since ā is also irreducible over k2, we
have a = ā or a and ā are prime to each other. However, by
the assumption, we cannot have a = ā, so a and ā are prime
to each other. Hence, aā be a factor over k of F, which is a
contradiction. �

For simplicity, from now on we assume

Assumption 1. F(x) does not contain any non-trivial factor
over k for hyperelliptic curve H : y2 = F(x) to be attacked.

However, even without Assumption 1, the attack re-
mains unchanged except for the more complicated details of
construction of Cab model for D.

In cases of [13], [15], GHS-sections D have huge gen-
era. Remember that the complexity of Gaudry method with
respect to genus g is O(g!). So, in [13], [15], Weil descent
attack can be applied only in special cases in which we can
take irreducible components of small genus of GHS-section
D. However, in our cases,

Proposition 6. The genus of GHS-section D is nine.

Proof. Under Assumption 1, as seen in the proof of Propo-
sition 5, F(x) and F̄(x) are prime to each other. So, GHS-
section D has twelve ramification points over H. Then,
for genus g of D, by Hurwitz formula, we have 2g − 2 =
2 · (2 · 2 − 2) + 12 = 16, which means g = 9. �

Therefore, we do not need to take irreducible compo-
nents of D. The only thing we have to do is to construct a
model over k of GHS-section D against which we can apply
Gaudry method. If we can construct such a model, DLP on
H can be solved by Gaudry method in the amount of compu-
tations O(q

17
9 ) [1], [15], [16], [19], which is less than O(q2)

for Pollard’s ρ-method. So, hereafter, we construct a Cab

model over k of GHS-section D.

4.2 Cab Model of GHS-Section

In general, to construct a Cab model of a given curve D, we
need to choose a point on D, which we call a “base point,”
and need to determine all of the regular functions outside the
base point on D. Remember that GHS-section D is defined
by (10), (11). Since GHS-section D is a double cover of
hyperelliptic curve y2

1 = x6 + ax5 + bx4 + cx3 + dx2 + ex+ f ,
GHS-section D has four points P1, P2, P3, P4 at infinity. As
seen later, P4 is fixed by the automorphism σ. We choose
the point P4 at infinity as the base point of Cab model of
D. The property of P4 being fixed by σ will be useful to
construct Cab model over k.

To determine all of the regular functions outside the
base point P4, we need to know the “value” of a given func-
tion at points P1, P2, P3, P4 at infinity. First, we find local
parameter expansions of coordinate functions at those points
at infinity.

4.2.1 Points of GHS-Section at Infinity

Let t := x2/y1. t is a common local parameter of hyper-
elliptic curve H at points Q1,Q2 at infinity. Removing
y1 from the first equation of D with t, we get t−2x4 =

x6 + ax5 + bx4 + cx3 + dx2 + ex + f . This has two solutions
x = −t−1 + α(1)

0 + α
(1)
1 t + · · · and x = t−1 + α(2)

0 + α
(2)
1 t + · · · ,

which give local parameter expansions of x at Q1, Q2, re-
spectively. Substituting this for x of y1 = t−1x2, we get a
local parameter expansion y1 = t−3 + β(i)

−2t−2 + β(i)
−1t−1 + · · ·

of y1 at Qi (i = 1, 2). Moreover, substituting local pa-
rameter expansion of x at Qi for x in the second equa-
tion y2

2 = x6 + aqx5 + bqx4 + cqx3 + dqx2 + eqx + f q of
D, we get y2 = −t−3 + γ(2i−1)

−2 t−2 + γ(2i−1)
−1 t−1 + · · · and

y2 = t−3 + γ(2i)
−2 t−2 + γ(2i)

−1 t−1 + · · · , which give local param-
eter expansions of y2 at two points of D at infinity over Qi

(i = 1, 2), respectively. Thus, we get the following local pa-
rameter expansions of points P1, P2, P3, P4 on D at infinity:

P1 = {x = −t−1 + α(1)
0 + α

(1)
1 t + · · · ,

y1 = t−3 + β(1)
−2t−2 + β(1)

−1t−1 + · · · ,
y2 = −t−3 + γ(1)

−2 t−2 + γ(1)
−1 t−1 + · · · },

P2 = {x = −t−1 + α(1)
0 + α

(1)
1 t + · · · ,

y1 = t−3 + β(1)
−2t−2 + β(1)

−1t−1 + · · · ,
y2 = t−3 + γ(2)

−2 t−2 + γ(2)
−1 t−1 + · · · },

P3 = {x = t−1 + α(2)
0 + α

(2)
1 t + · · · ,
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y1 = t−3 + β(2)
−2t−2 + β(2)

−1t−1 + · · · ,
y2 = −t−3 + γ(3)

−2 t−2 + γ(3)
−1 t−1 + · · · },

P4 = {x = t−1 + α(2)
0 + α

(2)
1 t + · · · ,

y1 = t−3 + β(2)
−2t−2 + β(2)

−1t−1 + · · · ,
y2 = t−3 + γ(4)

−2 t−2 + γ(4)
−1 t−1 + · · · }.

The set of points at infinity {P1, P2, P3, P4} is obviously
fixed by the automorphism σ. Moreover,

Proposition 7. P4 is fixed by σ.

Proof. Let vP( f ) denote the valuation of a function f at
point P. Let σ(P4) = P1. By the expansions of y1, y2

at P4, we know vP4 (y1 − y2) ≥ −2. On the other hand,
we have vP4 (y1 − y2) = vP1

σ(y1 − y2) = vP1 (y2 − y1). By
the expansions y1, y2 at P1, we see vP1 (y2 − y1) = −3, so
vP4 (y1 − y2) = −3, which is a contradiction. Similarly,
we know σ(P4) � P3. Let σ(P4) = P2. By the expan-
sion of x at P4, we have vP4 (x − t−1) ≥ 0. On the other
hand, vP4 (x − t−1) = vP2

σ (x − t−1) = vP2 (x − (t−1)σ). We
have x − (t−1)σ = x − y2/x2 = −2t−1 + · · · at P2. So,
vP4 (x − t−1) = vP2 (x − (t−1)σ) = −1, which is also a con-
tradiction. Thus, σ(P4) = P4. �

4.2.2 Regular Functions Outside the Base Point

We have to determine regular functions outside the base
point P4 on GHS-section D. Those functions are regular
in x−y1−y2 affine space. So, they are expressed by polyno-
mials of x, y1, y2 since D is nonsingular in the affine space
by Assumption 1.

Since GHS-section D is of genus nine by Proposition
6, by assuming P4 is not a Weierstrass point of D, the min-
imum generators of pole numbers at P4 is {10, 11, . . . , 19}.
So, polynomials f10, f11, . . . , f19, which has the unique pole
of order 10, 11, . . . , 19 at P4, respectively, generate the alge-
bra of regular functions outside P4. (Even if P4 is a Weier-
strass point, the situation is similar except for members of
the minimum generators of pole numbers at P4.)

In order to construct such a polynomial fi regular away
P4, we recursively take a suitable linear sum of polynomials
which have the same pole order at Pi, until we get a polyno-
mial regular at Pi for i = 1, 2, 3. Note that we can know the
“value” of polynomials at Pi using local parameter expan-
sions of Pi in Sect. 4.2.1.

Using those polynomials f10, f11, . . . , f19, we can con-
struct an explicit C10,11,··· ,19 model with a base point P4 of
GHS-section D over k2 [18]. To construct an C10,11,··· ,19

model C over k, instead of k2, it is sufficient to use gi =

Trk2/k( fi) (i = 10, 11, . . . , 19) instead of fi. Here, Trk2/k is de-
fined as Trk2/k(Σal,m,nxlym

1 y
n
2) = Σal,m,nxlym

1 y
n
2+Σaq

l,m,nxlym
2 y

n
1.

Note that gi is regular away P4 and the pole order of gi at P4

remains to be i by Proposition 7.

4.3 Reduction

In Sect. 4.2, we construct C10,11,...,19 model C over k2 and

k of GHS-section D: k2(x, y1, y2)
φ∗� k2( f10, f11, . . . , f19) =

k2(g10, g11, . . . , g19).
Let the isomorphism from C10,11,...,19 model C to GHS-

section D, corresponding to φ∗, be φ : (g10, g11, . . . , g19) ∈
C

∼�→ (x, y1, y2) ∈ D. Let π be a projection from GHS-
section D to hyperelliptic curve H: π : (x, y1, y2) ∈ D �→
(x, y1) ∈ H. The composition Π1 := π · φ is a map from C to
H.

As seen in Sect. 2, we suppose hyperelliptic curve H
is a double-cover of an elliptic curve E over k4 with a map
Π2: H → E. Let Π = Π2 · Π1 : C → E, which induces a
morphism Ψ between Jacobians:

Ψ : E(k4)
Π∗→ JacC(k4)

Normk4/k→ JacC(k).

Proposition 8. Let G be an element of E(k4) of prime or-
der n, which is extremely larger than the degree of Π∗.
Moreover, suppose n2 does not divide the order of Jacobian
JacC(k4). Then, G does not vanish under Ψ.

Proof. Since the order n of G is large enough, G does not
vanish under Π∗. By the theory of Weil descent [9], there
is a surjection from JacC(k) to E(k4). So, there is an ele-
ment of order n in JacC(k). Then, by the assumption that n2

does not divide the order of Jacobian JacC(k4), Π∗(G) must
belong to Jack(C), as pointed out by Galbraith, and Smart
[12] in a more general situation. So it does not vanish under
Normk4/k. �

By Proposition 8, we can suppose DLP on an elliptic
curve E over k4 is reduced to DLP on C10,11,...,19 curve C
over k by homomorphism Ψ. Details of the way to compute
homomorphism Ψ are illustrated through examples.

5. Examples

We give examples which shows DLP on elliptic curves over
a quartic extension field k4 is reduced to DLP on C10,11,...,19

curves over the subfield k. In the computations below, we
used Magma V.2.10.

5.1 Example 1

Let k be a prime field of characteristic q = p = 71, k2 be
its quadratic extension defined by an irreducible polynomial
o2 − 2o + 7, and k4 be its quadratic extension defined by an
irreducible polynomial r2 − or + 1.

We randomly generate an elliptic curve of Weierstrass
form Ew : v21 + 70u3

1 + (o2058r + o4231)u1 + o3375r + o2069 = 0
over k4 with a prime order n = 25404727. Since j(Ew) =
o1854r + o2692 � k2, we have d(γ) � 0 by Proposition 4.
Hence, by Theorem 1, Ew is transformed into Scholten form
v2 = au3 + bu2 + bq2

u + aq2
over k4. In fact, let a = o2258r +

o214, b = o3519r + o2654, B = −(o4167r + o3302). Then, by
a transformation Π(1)

2 : En � Ew over k4 defined by u =
a−1(u1 − B), v = a−1v1, Ew is transformed into En : v2 =
au3+bu2+bq2

u+aq2
= (o2258r+o214)u3+(o3519r+o2654)u2+
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(o999r + o3103)u + o4778r + o355.
As seen in Sect. 2, Scholten form En is covered by a

genus two hyperelliptic curve H0 : y2
0 = a(x0 − c)6 + b(x0 −

c)4(x0 − cq2
)2 + bq2

(x0 − c)2(x0 − cq2
)4 + aq2

(x0 − cq2
)6 =

o1463x6
0 + o666x5

0 + o2070x4
0 + o1093x3

0 + o794x2
0 + o315x0 + o1939.

A morphism Π(2)
2 from H0 to En is given by u =

(
x0−c

x0−cq2

)2
,

v = y0

(x0−cq2 )3
. In the computations, we take c = r.

Let F(x0) denote the right-hand side of the equation for
H0. In order to make F(x0) monic, we apply a transforma-
tion Π(3)

2 : H � H0 defined by y1 = F(β)−1/2(x0 − β)−3y0,
x = 1/(x0 − β) with β = 3 (which makes α := F(β) = o2756

a square) to the equation for H0. Then H0 is transformed
into a hyperelliptic curve H : y2

1 = x6 + o2177x5 + o4311x4 +

o2447x3 + o566x2 + o3664x + o3747.
Let Π2 = Π

(1)
2 · Π(2)

2 · Π(3)
2 : H → Ew. Take a point

G = (o387r + o397, o166r + o1205) of order n on Ew. By the
definition of Π(i)

2 (i = 1, 2, 3), an inverse image J = Π∗2(G) of
G via map Π2 : H → Ew is computed to be zeros of

J = {a((β − c)x + 1)2 − (Gx + β2)((β − cq2
)x + 1)2,

aα1/2y1 −Gy((β − cq2
)x + 1)3}

= {(o353r + o4196)x2 + (o1900r + o1805)x + o1922r

+o2318, (o3720r + o1533)x3 + (o1693r + o4323)x2

+ (o3636r + o1592)y1 + (o1256r + o3701)x + o2686r

+o3725},
which, as an ideal of k4[x, y1], represents an element of Ja-
cobian of hyperelliptic curve H corresponding to G (Gx,Gy
denotes x-coordinate and y-coordinate of G, respectively).
We verified that discrete logarithm is preserved from G to J.

As seen in Sect. 4.2.1, We take GHS-section D of the
scalar restriction Πk2/kH of H. Parameter expansions with
respect to t = x2/y1 of points P1, P2, P3, P4 at infinity on D
are computed as follows:

P1 : x = 70t−1 + o4265 + o261t + o4535t2 + o2836t3 + · · · ,
y1 = t−3 + o2177t−2 + o4111t−1 + o3867 + o3086t + · · · ,
y2 = 70t−3 + o2713t−2 + o4163t−1 + o3058 + o4299t + · · · ,

P2 : x = 70t−1 + o4265 + o261t + o4535t2 + o2836t3 + · · · ,
y1 = t−3 + o2177t−2 + o4111t−1 + o3867 + o3086t + · · · ,
y2 = t−3 + o193t−2 + o1643t−1 + o538 + o1779t + · · · ,

P3 : x = t−1 + o4265 + o2781t + o4535t2 + o316t3 + · · · ,
y1 = t−3 + o4697t−2 + o4111t−1 + o1347 + o3086t + · · · ,
y2 = 70t−3 + o193t−2 + o4163t−1 + o538 + o4299t + · · · ,

P4 : x = t−1 + o4265 + o2781t + o4535t2 + o316t3 + · · · ,
y1 = t−3 + o4697t−2 + o4111t−1 + o1347 + o3086t + · · · ,
y2 = t−3 + o2713t−2 + o1643t−1 + o3058 + o1779t + · · · .

As seen in Sect. 4.2.2, with these parameter expansions, we
obtain functions f10, f11, . . . , f19 on D which has the unique
pole at P4 of order 10, 11, . . . , 19, respectively. Applying
Trk2/k to them, we obtain

g10 = o1264x3y2
1 + 3x3y1y2 + o271x3y1 + · · · + o1754y2,

g11 = o1386x3y2
1 + x3y1y2 + o2108x3y1 + · · · + o630y2,

...

g19 = o3534x3y2
1 + 41x3y1y2 + o3210x3y1 + · · · + o1622y2.

Every gi has the unique pole at P4 of order i as well as
fi. Among those g10, g11, . . . , g19, we have following rela-
tions r22, r23, . . . , r31 which define C10,11,...,19 curve C over k
in g10 − g11 − · · · − g19 affine space:

r22 = g
2
11 − (5g10g12 + 42g10g11 + 18g2

10 + · · · + 25),

r23 = g11g12 − (26g10g13 + 38g10g12 + · · · + 58),
...

r31 = g12g19−(9g2
10g11+62g3

10+10g10g19+· · ·+28).

Now, we compute an image of J via map Π∗1. Re-
member Π1 = π · φ : C → D → H (See Sect. 4.3). Let
R = k4[x, y1] be a coordinate ring of H and R1 = k4[x, y1, y2]
be a coordinate ring of D, and R2 = k[ǧ10, . . . , ǧ19] be a co-
ordinate ring of C. J is an ideal of R. J := π∗(J) is nothing
but an ideal generated by J in R1. J corresponds to a di-
visor with poles of the first order at P1, P2, P3, P4. We
make those poles at P1, P2, P3 vanish by taking the prod-
uct of J with a polynomial with zeros at P1, P2, P3, e.g.
h13 := 40g13 + 7g12 + 44g11 + 12g10 + 31. Then an im-
age of h13J (which is in the same ideal class of J) under φ∗
can be computed by using an elimination ideal as follows:

J ← J · h13,
J ← Eliminate(J + {ǧ10 − g10(x, y1, y2),

ǧ11 − g11(x, y1, y2), · · · ,
ǧ19 − g19(x, y1, y2)}, {x, y1, y2})

J ← Reduce(J),

where Eliminate(·, {x, y1, y2}) denotes an ideal in R2 ob-
tained by eliminating the variables x, y1, y2 from the ideal
of the first argument, which shows relations among gi(i =
10, 11, . . . , 19) over J, that is the image of J by Π∗1.
Reduce(J) reduces an ideal J (for details, see [4]). Finally,
we compute Normk4/k(J):

J ← jSum(jSum(J, J̃), jSum( ˜̃J,
˜̃̃
J)),

where jSum(J, J̃) denotes a sum of J and its conjugate J̃ over
k in Jacobian of C. For details of Reduce and jSum, see [4].
Thus, we have computed J = Ψ(G) = Normk4/k ·Π∗1 ·Π∗2(G):

J = {g2
17 + 37g17 + 21g16 + 49g15 + 33g14 + · · · + 59,

g16g17 + 45g17 + 15g16 + 45g15 + 21g14 + · · · + 63,

· · · , g18 + 24g17 + 27g16 + 31g15 + 64g14 + · · · + 64}
which denotes an element of Jacobian over k of C10,11,...,19

curve C (for simplicity, we use the letter g for ǧ) correspond-
ing to G on Ew.

Similarly, m = 25415194-times point Gm = (o637r +
o224, o1671r + o3481) of G is mapped to an element
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Jm = {g2
17 + 6g17 + 70g16 + 66g15 + 15g14 + · · · + 68,

g16g17 + 5g17 + 20g16 + 56g15 + 16g14 + · · · + 11,

· · · , g18 + 23g17 + 34g16 + 65g15 + 18g14 + · · · + 4}
of Jacobian of C. We verified that m-times element of J is
actually equal to Jm in Jacobian of C. Thus, we verified that
DLP on elliptic curve Ew over k4 is actually reduced to DLP
on C10,11,...,19 curve C over k.

5.2 Example 2

We show an example of group of 160-bit order. Let k be
the prime field of characteristic q = p = 240 − 235 − 1, k2

be its quadratic extension defined by an irreducible polyno-
mial o2 + 352619714346, and k4 be its quadratic extension
defined by an irreducible polynomial r2+702753204573o+
465976829831. An elliptic curve

Ew : v21 = u3
1 + ((773569929047o + 698785454132)r

+892468792697o + 773390597884)u1

+ (245022657483o + 657619174138)r

+ 721187940068o + 865450731541

over k4 has a 160-bit prime order n:
1287200406650928609777376029597716043015507861907.

As seen in Example 1, we found that DLP on Ew is reduced
to DLP on the following C10,11,...,19 curve C:

g2
11 − (671010913434g10g12 + 306446345201g10g11

+ 205461673669g2
10 + · · · + 675147796101) = 0,

g11g12−(752537421825g10g13+1016531429604g10g12

+ 897328181722g10g11 + · · · + 1053682994222) = 0,

...

g12g19 − (128634052382g2
10g11 + 950367786029g3

10

+457707828730g10g19+· · ·+665817232135) = 0.

A point G = (1, (448960196430o + 540742096931)r +
521019129313o + 684726004416) on Ew is mapped to an
element

J = {g2
17 + 3720685308g17 + 760318447938g16 +

· · · + 930677256954, g16g17 + 725294630540g17

+222096222048g16 + · · · + 752506763900, · · · ,
g18 + 942200891029g17 + 935848743981g16

+ · · · + 234904933666}
of Jacobian of C. We verified that discrete-log is preserved
from G to J.
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tion for small genus hyperelliptic index calculus,” Cryptology ePrint
Archive, Report 2004/153, 2004.

[17] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing elliptic curve
logarithms to logarithms in a finite fields,” Proc. STOC, pp.80–89,
1991.

[18] S. Miura, “Linear codes on affine algebraic curves,” IEICE Trans.
Fundamentals (Japanese Edition), vol.J81-A, no.10, pp.1398–1421,
Oct. 1998.

[19] K. Nagao, “Improvement of Thériault algorithm of index calculus
for Jacobian of hyperelliptic curves of small genus,” Cryptology
ePrint Archive, Report 2004/161, 2004.

[20] K. Nagao, S. Arita, K. Matsuo, and M. Shimura, “A Weil descent at-
tack against elliptic curve cryptosystems over quartic fields I,” Proc.
SCIS2004, pp.897–902, 2004.

[21] T. Satoh and K. Araki, “Fermat quotients and the polynomial time
discrete log algorithm for anomalous elliptic curves,” Commentarii
Mathematici Universitatis Sancti Pauli, vol.47, no.1, 1998.

[22] J. Scholten, “Weil restriction of an elliptic curve over a quadratic ex-
tension,” preprint, http://www.esat.kuleuven.ac.be/˜jscholte/weilres.
ps, 2003.

[23] I. Semaev, “Evaluation of discrete logarithms in a group of p-torsion
points of an elliptic curve in characteristic p,” Math. Comp., vol.67,
pp.353–356, 1998.

[24] N. Smart, “The discrete logarithm problem on elliptic curves of trace
one,” J. Cryptology, vol.12, no.3, pp.193–196, 1999.



1254
IEICE TRANS. FUNDAMENTALS, VOL.E89–A, NO.5 MAY 2006

[25] N. Thériault, “Index calculus attack for hyperelliptic curves of
small genus,” ASIACRYPT 2003, LNCS 2894, pp.75–92, Springer-
Verlag, 2003.

[26] N. Thériault, “Weil descent attack for Kummer extensions,” J. Ra-
manujan Math. Soc., vol.18, no.3, pp.281–312, 2003.

Seigo Arita was born in 1963. He has been
interested in prime numbers, algebraic curves
and now cryptographic protocols. He is with
Institute of Information Security, Kanagawa,
Japan. He is a member of JMS.

Kazuto Matsuo received the B.E., M.E.,
and D.E. degrees from Chuo University, Tokyo,
Japan in 1986, 1988, and 2001, respectively.
He joined Toyo Communication Equipment Co.,
LTD from 1988 to 2001. He is currently a pro-
fessor in the graduate school of information se-
curity at the Institute of Information Security,
Yokohama, Japan, and also a professor of the
Research and Development Initiative of Chuo
University.

Koh-ichi Nagao received the B.S., M.S.,
and Ph.D. degrees in mathematical science from
Kobe University, Osaka University, and Kyushu
University, in 1987, 1989, and 1996 respec-
tively. In 1998, he joined the Department of
Engineering at Kanto Gakuin University. Since
April 2001, he is an assistant professor at the
same university.

Mahoro Shimura received the B.S. from
the Department of Mathematics, Waseda Uni-
versity in 1991 in mathematics, and the M.S.
and the D.S. from the Department of Mathe-
matical Science, Waseda University in 1993 and
2001, respectively both in mathematics. He was
a research associate at Science and Engineering,
Waseda University from 1999 to 2001. He is a
research fellow of Chuo University 21st Century
Center of Excellence Program from 2003.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <>
    /KOR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
    /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


