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SUMMARY  The baby-step giant-step algorithm, BSGS for
short, was proposed by Shanks in order to compute the class
number of an imaginary quadratic field. This algorithm is at
present known as a very useful tool for computing with respect
to finite groups such as the discrete logarithms and counting the
number of the elements. Especially, the BSGS is normally made
use of counting the rational points on the Jacobian of a hyper-
elliptic curve over a finite field. Indeed, research on the practical
improvement of the BSGS has recently received a lot of attention
from a cryptographic viewpoint. In this paper, we explicitly an-
alyze the modified BSGS, which is for non-uniform distributions
of the group order, proposed by Blackburn and Teske. More pre-
cisely, we refine the Blackburn-Teske algorithm, and also propose
a criterion for the decision of the effectiveness of their algorithm;
namely, our proposed criterion explicitly shows that what distri-
bution is needed in order that their proposed algorithm is faster
than the original BSGS. That is, we for the first time present
a necessary and sufficient condition under which the modified
BSGS is effective.
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1. Introduction

The baby-step giant-step algorithm, BSGS for short,
was proposed by D. Shanks [6] in order to compute
the class number of an imaginary quadratic field. The
BSGS is at present known as a useful and efficient tool
for counting the number of elements of an arbitrary fi-
nite group; e.g. Mestre employed the BSGS for counting
the number of points on an elliptic curve defined over a
finite field (see [3]). Especially, the BSGS is often made
use of counting the rational points on the Jacobian of
a curve over a finite field for high genus curve based
cryptography. Here we note that the most notable re-
cent improvement of BSGS can be found in [5], which
gives an essential improvement of [4].

Since Shanks’ proposal of the BSGS, some im-
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provements and modifications have been investigated
by a lot of researchers. In [2], Buchmann et al. pro-
posed an improvement of the original method based on
the following idea: First, divide the search interval into
a lot of “short” intervals, then put a suitable “baby-
step depth,” which is the number of baby-steps for an
individual short interval. Buchmann et al. showed its
effectiveness by implementation on computing the class
number of imaginary quadratic number fields. Besides,
their method can be applied to three representative
problems with respect to finite groups: computing the
discrete logarithm, computing the number of elements,
and determining structure of a group. Furthermore,
Terr [8] improved their method to apply to comput-
ing the class number of imaginary quadratic number
fields. Note that the improvement of Buchmann et al.
and Terr assumes that the distribution of the number
of the group elements is uniform.

Recently, Blackburn and Teske [1] have proposed
an improvement of [2] in the case that the distribution
of the number of the group elements is known and is
not always uniform. Although, [1] only concerned with
the discrete logarithm problem, it is easy to see that the
algorithms in [1] can be used for counting the number
of elements of a group as well as computing the discrete
logarithms. In [1], they also considered the way of opti-
mization for the baby-step depth of an individual short
interval by using their proposed “baby-step function.”
Namely, if the distribution of the answers of the target
problems is given, we might be able to take the opti-
mal baby-step depth for an individual short interval.
However, Blackburn and Teske only gave a practical
consideration and mentioned “We use the practical al-
gorithm with short cut; by doing this, we risk some dis-
crepancy with our theoretically optimal function, but
this is the algorithm that would be used in practice af-
ter all. (page 165 in [1]),” so, they would not explicitly
describe the way of optimization.

In this paper, we present a refinement of the mod-
ified BSGS proposed by Blackburn and Teske. We also
propose a criterion for the decision of the effective-
ness of the Blackburn-Teske algorithm. Namely, our
proposed criterion explicitly shows that what distribu-
tion is needed in order that their proposed algorithm
is faster than the original BSGS. That is, we for the
first time present a necessary and sufficient condition
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under which the modified BSGS is effective. When it
comes to the application of the modified BSGS and our
proposed criterion to cryptography, we show that the
modified BSGS would not be more effective than what
is expected in [1] in the case of computation of the
Jacobian order of a genus 2 hyperelliptic curve over a
finite field by using experimental results. However, this
does not deny the existence of positive contribution of
the modified BSGS to cryptography. So one hopes the
modified BSGS can be useful to some expected crypto-
graphic primitives in time to come.

This paper is organized as follows. First, we will
review the original BSGS in Sect.2. Second, we will
analyze the Blackburn-Teske modified BSGS in Sect. 3.
Finally we conclude this paper.

Throughout this paper, we assume that the distri-
bution of the group order is given, and the efficiency of
algorithms on a finite group is estimated by the average
of the number of additions on a group. So, we assume
that the efficiency of the inverse operations on a group
can be negligible.

2. The Baby-Step Giant-Step Algorithm

In this section, we will review the original BSGS algo-
rithm, and give some notations and definitions.

We assume that the following situation: Comput-
ing the order of a finite group G; we are given the distri-
bution of the order of G’s, and G is from a set of groups
G = {G} satisfying |#G — ¢| < w where c,w € Z are
some constants. From here on, w.l.o.g., we may also
assume that each G is cyclic.

We also assume that the cost of one baby step is
the same as that of one giant step. We will discuss the
case that the cost of one baby step is cheaper than that
of giant step in Appendix B.

Algorithm 1 Baby-Step Giant-Step
Input: A finite cyclic group G.
Output: The order of G.

1: Choose a random element P € G.

2: Compute BS = [\/w].

3: Compute (¢c+7)P (j =0,1,2,...,BS — 1), and store them.
4: Compute BS - P.

5: for i =0,...,[w/BS] do

6: Compute Q =1i-(BS- P).

7:  if 35 such that Q = £(c+ j)P then

8: return ¢+ j F (i - BS) as ( a candidate for ) #G.

9:  end if

10: end for

Here we note the group operation on G is addi-
tively written. Put M be the average of |#G — c/’s,
then we can optimize the number of additions on G
that the BSGS requires, say T, for the original BSGS
to be 2v/M, where we take BS, the baby-step depth, i.e.
the number of the baby-steps, as approximately /M.
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Actually, let f(t) be the probability function associated
with the distribution of {|#G — |}, i.e.,

f(t) =Prob[G € G | I(G) =t],

where [(G) = |#G —¢|, then we have M = E;U:_Ol tf(t),
and the number of additions on G in the giant-step is
expected to be on the order of 55 when x = |#G — ¢,
where BS denotes the baby-step depth. We also have
T = BS+ Y1 2 f(t) = BS + 2L > 2¢/M, where
the equality holds if and only if BS = /M.

3. BSGS for Non-uniform Distributions

In this section, we discuss the modified BSGS proposed
by Blackburn-Teske [1].
The notations are as in the previous section. First
of all, we define the functions p(z), M(x) as p(z) =
rz—1 x—1 w—1
tho f(t)a M(l‘) = 2.t=0 tf(t)a M = Zt:o tf(t)'
Put I = [0,w). Now, we take a division, A, of I:
A:0=wy<w <ws < - <wy,=w, (w;€Z)
where n is a positive integer. Put |A| = n. Further-
more, put Ia ; = [w;—1,w;), and

wifl

hai=wi—wi1, Pai= Y f(b).

t=w;_1

Note that Pa,; denotes the probability that |[#G — ¢|
lies in the i-th cell In ;. We call that A is a partition,
if Pan; > 0 for each i. Further, we call each Ia ; the
“j-th cell” of the division (resp. partition) A of I.

For simplicity, we also write the division (resp. par-
tition) A as follows:

I=In1+--+1In, or I:ZIM.

=1

Here we call ha ; the “i-th depth” of the division
(resp. partition) A of I. Note that Blackburn and Teske
[1] only considered the case that all ha ; are the same.

Now, let BSa; (i = 1,---,n) be positive integers
satisfying the following:

0< BSAJ < BSAQ <...< BSA,H.

We will soon give the modified BSGS algorithm, for a
partition A, using BSa ; as the baby-step depth for the
cell Ia ;. In that case, we call the BSa ; the baby-step
depth of the i-th cell of partition A. Note that BSa ;
is called baby-step function in [1].

Also, we usually put BS; = BSa i, I; = Ia;, P =
Pp; and BSy = 0 below. Besides, for simplicity, we
sometimes set ha ; = h; unless we are confused.
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Algorithm 2 Modified baby-step giant-step
Input: A finite cyclic group G.
Output: The order of G.
1: Choose a random element P € G.
2: fork=1,...,ndo
3:  Compute (¢+j)P (j = BSk—1,BSk—1+1,...,BS, — 1)
and store them.

4 Compute BSy - P.

5: fori:O,.‘.,[Bh—gk]do

6: Compute Q =i - (BSk - P) + wi_1 P.

7 if 3j such that 0 < j < BS, — 1 and Q = *(c + j)P
then

8: return ¢+ j F (i - BSk + wg—1) as ( a candidate for

) #G.

9: end if

10: end for

11: end for

The total running time of this algorithm can be
easily estimated as in [1] (page 156):

> {r s+ 4+ |}

j=1
where
j—1
A = Z?c:l“?fbskk] J 17 7n_1 and
/ 0 j=n
wj71 wj71
M= Y (t—wi)f()= Y tf(t)—w; 1Py
t=w;_1 t=w;_1

~ B
TA=Z<P;€-BS]€+B—SZ>,

k=1
where
B, — My +h Y20 Py k=1,...,n—1
My, k=n

Note that é‘ifg"k is the average of the running time
of the giant-step for Ia x in the case that |#G — c| lies
in the k-th interval.

We will study the property of the function T in
order to make a criterion for the decision of the effec-
tiveness of this algorithm, which is the main purpose of
this paper. More precisely, we will study the condition
that there is a certain partition A and real numbers
0 <81 < - < 8, such that Ta(sy, -+, 8,) < 2V M.
Here, we know that the running time of original BSGS
algorithm is roughly 2v/M .

Put
B
tk(s):PkS-i-?k, mg =4/ =

where s is an arbitrary positive real number.
Let Ta be a function defined by the following:
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n

Ta(s1, 52, 80) = Y tils),

i=1

where s = (s1,52,...,8,) from RY,. Besides, we can
describe the functions P, By by using the probability
function f(t) as follows.

wi—1
P= > f),
t=wg_1
w—1 wg—1
Be=he > ft)+ > (t—wp 1)f().
t=wy t=wp_1

These numbers Py, By, only depend on the interval
I. So, when an interval J = [a,8) (0 < o < 8 <
w, «,f € Z) is given, then we can define Py, By by
the following:

B—1
PJ = Z f(t)a
= w—1 B—1
By=(B—a)> ft)+ Y (t—a)f(D).
t=p0 t=«

With these notations, we note that P, = Py, By =
By, . Similarly, we define t;(s) = Pys + %. Also, we

deﬁneszq/%j,ifPJ>0.

We will study the property of the function Ta.

Lemma 3.1.
n
TA(mla' "7mn) = QZR s Mmy.
i=1
Proof. We can obtain above equation immediately from

the definition. O

Lemma 3.2. T has the unique minimum at (mq, ...,
my). Namely, for any (s1,...,s,) € RY,

TA(Sl,...

The equality holds if and only if s; = mq, ...

7877,) > TA(mla"'am’l’L)'
,Sp = My,

Proof. Ta(s1,-..,8,) is of the form > t;(s;) and each
t;(s;) has the unique minimum at s; = m;. O

Lemma 3.3.

Proof. Tt is easy to see that >\ | P, = S0 L f(t) =
1. Since M; = Wbyt () — we1 P =

t=wg_1

wiel g p() — Py Zf;ll h;, we have >} _ M =

t=wg—1
tw:_ol tf(t) 722:1 25;11 Pyh; = Mﬁz;}:_f ZZ:]’-H Pyh;
and we easily obtain the formula of > B;. O
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For a partition A, we will consider the interval
_ k2
Inew = UZ‘:]ﬁIA,i-

Lemma 3.4.

ko
Lnew E PZ’ BI?Lew § Bia

i= kl i=ky

Z ti(

7,]61

Proof. Here we only show the second one; B, +
Big 4] = Bla,4), because the others are easily obtained
from the representation of Py and tk( ) bimilarly Since

Biag = (B — )Xy f(b) N STt — ) f(t) =
(B—a) i F(O)+(B—a) 75 FO+2 20 (t=a) f(2)
and B[ﬁv = (v 5)2“’_1 ()JrZ7 1(75* o) f (t)

(v=0) i, F(O+207 5 (=) f(8)—(8—a) X7 f(t)

we can easﬂy obtain the above equation.

Since A is a partition, we see P; > 0 for each i and
Pr. > 0. So, my,_ is well defined.

Inew new

Lemma 3.5.

min{mg,, ..., Mg, } <my, . <max{mg,, ..., Mg, }
The equality holds if and only if my, =+ = my,.
Proof. It is easy to see that m%nw = % IE: =

> Pi~m?

5 < max{mil,...7mi2} and also the equal-

ity holds iff my, = --- = my,. Similarly, we have
min{mg,,...,mg, } <my, ... O

new

Lemma 3.6.

TAa(VM,...,v/M) =2VM,and
mn)SQ\/Ma

where the equality of the latter formula holds if and
onlyifm; =...=m, =vVM.

Proof. From Lemma 3.3, we have

Ta(

TA(mla"'a

> Bi
i =2V M.

So, we have the former equation. On the other hand,
from Lemma 3.2, we have

WM =Ta(VM,... .,/ M) > Ta(my,...,m,),

and the equality of the latter formula holds if and only
ifmy=...=m, =vM. O

Now, for a partition A of I, we define the “effec-
tiveness” of the partition A as follows.

Definition 3.7. For any partition A of I, we say A is
effective if and only if my < -+ < my,.
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We can decide whether the modified BSGS algo-
rithm is faster than the original one or not by using this
property of m;’s.

If a partition A is effective, taking the baby-
step depth BS; = m,;, if we ignore the condition
BS;’s being integers, the running time of the algorithm
Ta(BSy,--+,BS,) is shorter than 2v/M (c.f. Lemma
3.6). Since the running time of the original BSGS al-
gorithm is expected to be 2v/M, the existence of an
effective partition is sufficient condition that the run-
ning time of this algorithm is shorter than that of the
original one. Furthermore, we will show that these con-
ditions are equivalent in Theorem 3.11.

Lemma 3.8. Let A be an effective partition of I. Let
A* be a partition of I of the form
IA K 1< kl

J k‘lIAJ i=k
INithy—ty, F1+1<i<n—ke+k

In- 3 =

Then the partition A* is also effective.

Proof. This lemma is followed by the relation ma x, <
Mipe , < MAky+1, Which is due to Lemma 3.5. O

Lemma 3.9. Let A be a partition of I consist of 2
cells, i.e. I =1I; + I5. Then we have

my < VM if and only if my > VM,
and
my > VM if and only if mq < VM.
Proof. By Lemma 3.3, P, =1— P, Bo = M — B; and

mo = I‘f__gl. Then, we see easily that the condition
my = %1 < VM is equivalent to the conditions M —

By > M — PLM and my = (/&=E- > /M. So, we
have the former relation. Similarly we can obtain the
other relation. O

Let  Zyn =min{t € Z|f(t) >0} +1 and
Tmaz = max{t € Z|f(t) > 0}.

The partition A of I, consist of 2 cells is of the form I =
[0, z) + [z, w) for some integer & With i < T < Tias-
Besides, for any integer x with Z.,in < < Tyae, the
division A of I = [0,z) 4 [x,w) is a partition. Remark

that m; = myo ) is of the form
(1 — p(x))x + M(x) (xmzn S X S xmaa:)'

p(x)

Example 1. We consider the case w = 10000, I =

[0,10000), I; = [0,1000), I> = [1000, 10000).
11/20000 ze€ 1 NZ

flx)=< 1/20000 z€lLNZ

0 otherwise
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Then we have P; = 11/20, P, = 9/20, and 2vVM =

20/ S0 (1) = 104.87.
Taking the partition A of the form I = I 4+ I, we have
mp = 36.30 and mo = 67.08. So, this is an effective
partition. In fact, Tao = 100.3 and approximately 4
percent speed up is done.

The following theorem gives a characterization
that, for a given probability function, there exists an
effective partition or not.

Theorem 3.10. The following three conditions are
equivalent:

(a) There exists an effective partition, A, satisfying
|A| > 2.

(b) There exists a positive integer = such that mp ) <

vV M where Tpin < T < Tjmaz-
(c) There exists a positive integer  such that mp, ., >

vV M where Tpin < T < Tymaz-

Proof. For any integer x with x,;, < < Tpes, the
division A of I = [0,z) + [z,w) is a partition. So,
obviously (b) and (c) are equivalent due to Lemma 3.9.
So, we only need to show (a) and (b) are equivalent.

(a) — (b): By Lemma 3.8, there is an effective
partition A* of I = I + I5. Then, there is some integer
x with Zpmin < & < Zmae such that I; = [0,2). Also,
due to Lemma 3.1 and 3.6, 2v/M > Ta-(my,me) =
2Pymy + 2Pymg > 2my, so we have (b).

(b) — (a): Put Iy = [0,z),Iz = [z,w). Since
Tmin < & < Toaz, the division A of I = 11 + 15 is a
partition. From Lemma 3.9, it is an effective partition.

O

Example 2. As an application of this theorem, we
could apply this to compute the order of the Jacobian of
genus 2 hyperelliptic curve. By some experiments, see

(—p@)z+ M) < /7],

p(z)
So, we may conclude that there exist no effective parti-

tions on the distribution of the orders of the Jacobian
of genus 2 hyperelliptic curves defined over a fixed finite
field.

The following theorem asserts that the existence
of an effective partition is necessary condition for that
the running time of the modified BSGS is shorter than
that of original one. Note that the sufficiency is directly
obtained from Lemma 3.6 and Definition 3.7. So, these
conditions are equivalent. Further, from Theorem 3.10,
this condition can be reduced to the computation of

mig.z) = U=p(@))2d+M(z) a1\q we can decide the crite-
[0,2) p(x)

rion that the modified BSGS algorithm is faster than
original one.

Appendix, we have mg ) =

Theorem 3.11. Assume that, for a given probability
function, there exist no partitions satisfying the condi-
tion (a) of Theorem 3.10. Then, for any partition A,
where |A| = n and any positive real numbers 51, ..., S,
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such that 0 < S7 < Sy <
TA(SDSQa"'aSn) 22\/ M.

Proof. Suppose that there exists a partition A, |A| = n,
and some positive real numbers Si,...,S, such that
0< S5 <85 <--- <5, satisfying

Ta(S1, S, ..., 8,) < 2V M. (1)

Furthermore, we may assume that n is the smallest
one among the partitions satisfying above assumption.
Then, n must be greater than or equal to 2. Actually,
if n = 1, then we have Ta(s) = s + &£ > 2v/M this
contradicts the assumption.

Also we need the following three claims in order to
prove this theorem.

- < S, we have

Claim A. The function Ta(s1,...,S,) has the min-
imum value on the domain D = {(s1,...,8,) €

RYy |51 <...<sp}

Proof. Let § = max(z‘f, 2vM ,r) and D; =

{(51782,"',5n)€R20|g§$1§52_ - < sy, <0}
For any Q = (s1, -+, Sn) € D\Ds, from the def-

inition of Dg, we see 0 < s1 < % or s, > 6. When

0<s1 < %,Weseei >(5and§—11 > By-0 > 2V M and

TA(Q> > tl(Sl) > 5_11 > 2V M.

When s, > §, we see P, - s, > P, -0 > 2v/M and

TA(Q) > tn(sn) > Pnsy, > 2V M.

So, we obtain Ta(Q) > 2V M for any Q € D\Ds. On

the other hand, Dy is a compact bounded domain in

RZO. So Ta has the minimum value at Py in the do-
main Ds, i.e.,

TA(Py) < TaA(P) for anyP € Ds.

Put P, = (VM,---,v/M). We easily see P, € Dj
and Ta(P;) = 2v/M from Lemma 3.6. So, we have
Ta(Py) < Ta(P1) = 2V M < Ta(Q) where Q is any
element of D\Ds. So, it is obvious that Ta has the
minimum value on the domain D. O

Suppose that T has the minimum value at
(S1,...,57) € D. Note that 0 < S} < S5, <.-- < S/
and Ta(S1,5%,...,5)) <2V M.

Claim B. 1 < S5 < ... < S),.

Proof. For some i, we assume S; = S; ;. Taking a new

partition A* of the form

IAJ' ]<’L
In-j =19 IniUlpnier j=i
In i1 i<j<n-1

Note that |A*| = n — 1.  Then, by Lemma
34, try. () = tai(s) + tairi(s), and we have
Ta-(S1,..-,8i, 81 9,-..,5,) = Ta(S1,...,S,) <
2v/M. This contradicts the minimum of n. O
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Claim C. S} > /M.

Proof. Suppose that S} < /M. Put In1 =10,z), then
we have my = mjg ;) > VM, since the condition (b)
of Theorem 3.10, which is equivalent to the condition
(a), does not hold. Therefore, the function t1(s) =

Pi(s + mTZ{) is monotone decreasing on (0,vM]. Let
e = min{S, — S, vM — Si} (e > 0 due to Claim B),
then we have ¢1(S]+e) < t1(S7). As a result, we obtain
TA(Si +675é7' . 73;1) - TA(Sia . 73;1)
=t1(S] +e) —t1(S7) <O0.

This contradicts the minimum of the value Ta(S1,
S0, O

Claim D. S/, < VM.

Proof. Suppose that S/, > VM. Put In, = [z,w),
then we have m,, = mp ) < V/M, since the condi-
tion (c) of Theorem 3.10, which is equivalent to the
condition (a), does not holds. Therefore, the func-

2
tion #,(s) = P,(s + “) is monotone increasing on

[VM,00). Let e = min{S], — S},_1,5, —vVM} (e >0
due to Claim B), then we have ¢, (S}, —e) < t,(S},). As
a result, we obtain

TA(SiaSé775;z - 6) _TA(S:/MH
=t,(S), —€) — tn(S),) < 0.

This contradicts the minimum of the value Ta(S1,
S0, O

Sy

Finally, above claims B, C and D are obviously
contradict each other. So, there are no positive real
numbers satisfying 0 < S; < S < --- < 5, and
Ta(S1,S2,...,5,) > 2v/M. This completes the proof
of theorem. O

From this theorem, we can conclude that an ef-
fective partition must be needed for that the modified
BSGS algorithm is faster than the original one.

4. Conclusion

In this paper, we explicitly analyzed the modified BSGS
proposed by Blackburn and Teske. More precisely, we
refined the Blackburn-Teske algorithm, and also pro-
posed a criterion for the decision of the effectiveness
of their algorithm. Our proposed criterion explicitly
shows that what distribution is needed so that their
proposed algorithm is faster than the original BSGS.
That is, we for the first time present a necessary and
sufficient condition under which the modified BSGS is
effective.
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Appendix A: Distribution of the Orders of
the Jacobians of Genus 2 Hyper-
elliptic Curves

For a fixed prime ¢ = 1048573 (20 bits) (resp. 16777213
(24 bits)), we randomly generated 10000 hyperelliptic
curves over F, of the form Y2 = F(X) (deg F(X) =
5) and computed the orders of their Jacobian groups.

Note that ¢ = ¢? + 6g + 1 and w = [4/¢3].
Let ¢(x) = W as in Example 2.
Tables A-1, A-2 show the values z/w, ¢(x) and
o(x)/vV M for each q.

Appendix B: When Baby Steps are Cheaper
than Giant Steps

In this paper, we consider the running time of the origi-
nal BSGS, T'(BS) (resp. modified BSGS, Ta(BS1,-+))
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Table A-1 The ratio ¢(x)/v/M for a 20 bits prime ¢ =

1048573.
z/w | p(x) p(z) ¢(x)/VM
0.10 | 0.3202 | 33780.96669 | 1.142820168
0.20 | 0.5798 | 32303.94212 | 1.092851987
0.30 | 0.7675 | 31186.37522 | 1.055044366
0.40 | 0.8821 | 30522.71627 | 1.032592586
0.50 | 0.9543 | 29953.83883 | 1.013347292
0.60 | 0.9848 | 29707.81703 | 1.005024302
0.70 | 0.9966 | 29596.65216 | 1.001263561
0.80 | 0.9997 | 29562.35649 | 1.000103328
0.85 | 0.9998 | 29561.96792 | 1.000090183
0.90 1 29559.30218 1
1.00 1 29559.30218 1

Table A-2 The ratio ¢(z)/v/M for a 24 bits prime ¢ =

16777213.
z/w | p(z) o(z) ¢(x) /M
0.10 0.324 267917.1503 | 1.134461128
0.20 | 0.5822 | 257007.4622 1.08826544
0.30 | 0.7676 | 248807.4965 | 1.053543727
0.40 | 0.8851 243111.581 1.029425096
0.50 | 0.9506 | 239591.8312 | 1.014521163
0.60 | 0.9845 | 237349.4101 | 1.005025916
0.70 | 0.9953 236577.629 1.001757907
0.80 | 0.9994 | 236219.3861 | 1.000240973
0.84 | 0.9998 236183.769 1.000090157
0.90 1 236162.4773 1
1.00 1 236162.4773 1

under the assumption that the cost of one baby step is
the same as that of one giant step. [9] treats the case
that the cost of one baby step is cheaper than that of gi-
ant step in order to apply BSGS for the order counting
of the Jacobian of hyperelliptic curves. Assume

running time of one giant step

running time of one baby step’

and we will consider the running time of the original
BSGS, T"(BS) (resp. modified BSGS, TR (BS1,---)) ,
where the total running time is estimated by the sum
of the number of baby steps and n times the number
of giant step. Then, from the proof of [9, Proposition
2.5], we have

. B M
T"(BS) = BS+ 5 n

BS M BS
_ J/a <—+B—S> :\/E-T<—>
NG NG vn
for original BSGS, and the estimation of the total run-

ning time T7(BS) is essentially reduced to that of
T(BS). Similarly, for modified BSGS, we easily have

BS,
TR(BSy,---) =vn-Ta <W7> 7
and the estimation of the total running time
TR(BS1,---) 1is essentially reduced to that of
TA(BSy,--+), which is the main subject of this paper.
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Fig. A-1 The domain satisfying in Eq. (A-1).

So, the statements in this paper can be easily extended
to the case that the cost of one baby step is cheaper
than that of giant step.

Appendix C: The Split Uniform Distribution

Suppose that the interval I = [0,h; + hgo) is divided
into two parts I1 = [0,h;) and Iz = [hy,hy + ha). We
consider “the split uniform distribution” such that

pr telNZ
f@) = pe telaNZ
0 otherwise.

Let A be the partition of the form I = I + I. It is
easy to obtain that

1 h 1
my =4[ sh1+ 2p27 ma =4[ 5hs
2 P1 2
h

and the inequality m? < m3 is equivalent to n<1l-
@) ﬁ 3 So, the condition that A is an effective partition
P2

is equivalent to

hy 2
—<1—-—.
ha (5)

P2

(A-1)

Appendix D: Comparison of Kangaroo and
BSGS

In [7], Teske explicitly analyses the running time of kan-
garoo method for the interval-[a, b]-DLP, which is the
discrete log problem with the solutions in the inter-
val [a,b]. Here, as we mentioned in Sect. 1, we remark
that kangaroo method can be employed for computing
the order of a finite group as well as computing the
DLP, and we can also see that the efficiency of kanga-
roo method for computing the order of a finite group
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is as comparable as that for computing the DLP. Ac-
cording to [7], the expected running time of kangaroo
method is given by 3.3v/b — a (less-storage case, page
285 in [7]) or 2v/b — a (more-storage case, page 286 in
[7]). In [9], Teske and Stein also analyse the running
time of BSGS for the interval [a, b]-order counting prob-
lem. According to [9, §2.1], the worst running time of
BSGS is given by 2v/b — a. So, generally speaking, if
we can use sufficiently large storage, it is expected to
be that the BSGS needs smaller number of group op-
erations than the kangaroo method.
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