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SUMMARY Counting the number of points of Jacobian va-
rieties of hyperelliptic curves over finite fields is necessary for con-
struction of hyperelliptic curve cryptosystems. Recently Gaudry
and Harley proposed a practical scheme for point counting of hy-
perelliptic curves. Their scheme consists of two parts: firstly to
compute the residue modulo a positive integer m of the order
of a given Jacobian variety, and then search for the order by a
square-root algorithm. In particular, the parallelized Pollard’s
lambda-method was used as the square-root algorithm, which
took 50CPU days to compute an order of 127 bits. This paper
shows a new variation of the baby step giant step algorithm to
improve the square-root algorithm part in the Gaudry-Harley
scheme. With knowledge of the residue modulo m of the charac-
teristic polynomial of the Frobenius endomorphism of a Jacobian
variety, the proposed algorithm provides a speed up by a factor
m, instead of

√
m in square-root algorithms. Moreover, imple-

mentation results of the proposed algorithm is presented includ-
ing a 135-bit prime order computed about 15 hours on Alpha
21264/667MHz and a 160-bit order.
key words: hyperelliptic curve cryptosystems, hyperelliptic
curves, point counting algorithms, baby step giant step algo-
rithms, Gaudry-Harley scheme

1. Introduction

Security of hyperelliptic curve cryptosystems depends
in an essential way on the orders of Jacobian varieties
of the hyperelliptic curves used in the systems. In par-
ticular, it is believed that if a small genus curve is used,
and the order of its Jacobian variety contains a prime
number with a small cofactor, coprime to the character-
istic of the definition field and immune to the Weil/Tate
pairing reduction [9], then the hyperelliptic curve cryp-
tosystem can resist all known attacks except maybe the
Weil-Descent attack [10].

Therefore, the order counting for Jacobian vari-
eties of random hyperelliptic curves is one of the most
important problems in construction of hyperelliptic
curve cryptosystems.
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Recently several researches have been reported on
point counting algorithms. In particular, efficient al-
gorithms [6], [12], [13], [15], [19], [20] have been proposed
for curves over small characteristic finite fields. Using
these algorithms, it is possible to compute orders of Ja-
cobian varieties in sizes for cryptographic usage (e.g.
160 bits) over such fields,

On the other hand, the situation is quite different
for point counting of curves over finite fields with arbi-
trary characteristics. Although a number of theoretical
results such as [1], [16], [17], [26] have been known, it is
only until very recent that a practical point counting
scheme for curves over large characteristic finite fields
is proposed and implemented by Gaudry and Harley
[11], [14].

The Gaudry-Harley scheme consists of two parts:
the first part is to compute the residue modulo a pos-
itive integer m of the order of a given Jacobian vari-
ety. The second part is to search for the order by an
algorithm square root complexity using its modulo m
residue. (We will misuse “square-root algorithm” re-
ferring to these search algorithms hereafter.) This is a
natural generalization of the point counting scheme of
elliptic curves proposed in [25] to hyperelliptic curves.
In particular, the parallelized Pollard’s lambda-method
was used as the searching algorithm. It seemed that the
square-root algorithm is the most time consuming part
in the Gaudry-Harley scheme. For an example, this
part took actually 50CPU days to compute an order of
127 bits.

This paper proposes an improvement of the baby
step giant step algorithm, and applies it as the square-
root algorithm in the Gaudry-Harley scheme. It is
shown that with knowledge of the residue modulo m
of the characteristic polynomial of the Frobenius endo-
morphism of a Jacobian variety, the proposed search
algorithm provides a speed up by a factor m, instead
of

√
m in the usual square-root algorithms. (All com-

plexity estimates hereafter are in terms of operations
in the Jacobians.) Moreover, implementation results
of the proposed algorithm are presented, including a
135-bit order is computed about 15 hours on Alpha
21264/667 MHz and a 160-bit order.
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2. Hyperelliptic Curves over Finite Fields and
the Orders of their Jacobian Varieties

Let p be an odd prime number, Fq a finite field of order
q with char(Fq) = p. Let g be a positive integer. Then
a genus g hyperelliptic curve C/Fq is defined as follows:

C :Y 2 = F (X),

F (X) = X2g+1 + f2gX
2g + · · · + f0, (1)

where fi ∈ Fq, disc (F ) �= 0. We will restrict ourselves
to g = 2 cases hereafter.

Let JC be the Jacobian variety of C, JC(Fq) its
Fq-rational points. It is known that JC(Fq) is a finite
Abelian group, so that discrete logarithm based cryp-
tosystems can be constructed on it.

The characteristic polynomial χq(X) of the q-th
power Frobenius endomorphism of JC is given as fol-
lows [17], [29]:

χq(X) = X4 − s1X3 + s2X2 − s1qX + q2, (2)

where si ∈ Z. Then the order #JC(Fq) of JC(Fq) can
be obtained as

#JC(Fq) = χq(1)

= q2 + 1 − s1(q + 1) + s2 (3)

from χq(X) [29]. It is well known that #JC(Fq) is
bounded within the Hasse-Weil range:

Lo ≤ #JC(Fq) ≤ Ho, (4)

Lo =
⌈
(
√
q − 1)4

⌉
, Ho =

⌊
(
√
q + 1)4

⌋
.

3. The Gaudry-Harley Scheme

In this section a rough description of the Gaudry-Harley
scheme and its implementation results are given accord-
ing to [11], [14]. (See [11], [14] for further details.)

In Algorithm 1, we show an outline of the Gaudry-
Harley scheme.

Algorithm 1: Gaudry-Harley point counting scheme.
Input: A genus 2 HEC C/Fq

Output: #JC(Fq)
1: Compute #JC(Fq) mod 2e by the halving algorithm
2: for prime numbers l = 3, 5, . . . , lmax do
3: Compute χq(X) mod l by a Schoof-like algorithm
4: Compute #JC(Fq) mod l from χq(X) mod l
5: end for
6: Compute χq(X) mod p by using the Cartier-Manin operator
7: Compute #JC(Fq) mod p from χq(X) mod p
8: Compute #JC(Fq) mod m, m = 2e · 3 · · · lmax · p by CRT
9: Compute #JC(Fq) by a square root algorithm using
#JC(Fq) mod m

The capability of Schoof-like algorithm therefore

the largest value of lmax which can be computed in
Step 2 of Algorithm 1 is subject to many factors, such
as the size of Fq. To construct secure curves, lmax = 13
is a reasonable estimate at the present. Since the com-
putation of the Cartier-Manin operator in Step 6 costs
exponential time in log p, it can not be applied to curves
over prime fields of large sizes in cryptographic us-
age. Therefore, Step 6 and 7 will be skipped when
the scheme is applied to curves over prime fields. For
the details of the Cartier-Manin operator and its com-
putation, see [11], [14], [22], [23], [31].

Gaudry and Harley computed the orders of the
Jacobian varieties of hyperelliptic curves over a 64-bit
prime field and a degree 3 extension of a 16-bit prime
field. The orders are 127 bits and 128 bits respectively,
and these results seem to be present records of point
counting of hyperelliptic curves over prime fields and
over large characteristic fields.

However, construction of secure hyperelliptic curve
for cryptographic usage is still out of reach. For an
example, it took 50CPU days in Step 9 when the 127-bit
order is computed. Besides, point counting algorithms
usually have to be repeated before a secure curve is
found.

4. A Baby Step Giant Step Algorithm Using
#JC(Fq) mod m

It is known that compared with the baby step giant step
algorithm, the parallelized Pollard’s lambda-method
used in Step 9 of Algorithm 1 has merits such as it
can be parallelized and needs only constant amount of
memories. Both algorithms have essentially the same
computational complexities in CPU time and can be
used in Step 9 in Algorithm 1.

In this section, as a preliminary to the following
sections, we describe a modified version of the standard
baby step giant step algorithm which can be used in
Step 9 in Algorithm 1. This algorithm is an extension of
the algorithm that has been applied for point counting
of elliptic curves in [25].

From Step 8 of Algorithm 1, one knows Nr ∈ Z
such that

#JC(Fq) = Nr +mNm, 0 ≤ Nr < m. (5)

Therefore, #JC(Fq) can be obtained by searching for
Nm among

�Lo/m� ≤ Nm ≤ �Ho/m� . (6)

Now we set n ≈
√
Ro, where

Ro ≈ (Ho − Lo)/m = 8q3/2/m+O(q/m). (7)

Then the candidates of Nm = i + nj can be obtained
by finding (i, j) such that

(Nr +mi)D = −mnjD (8)
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for all D ∈ JC(Fq) by searching for a collision between
the LHS and the RHS of (8) among

0 ≤ i < n, (9)⌊
Lo

mn

⌋
− 1 ≤ j ≤

⌊
Ho

mn

⌋
. (10)

Assuming #JC(Fq) is a prime order and q is large
enough, one can compute #JC(Fq) from the pair (i, j)
obtained by the above computation as follows:

#JC(Fq) = Nr +m(i+ nj). (11)

When #JC(Fq) is not a prime number, to compute
#JC(Fq) one may have to calculate Nr +m(i+nj) for
different divisors D ∈ JC(Fq) and their least common
multiple [5], [14]. However, it is possible to test whether
#JC(Fq) is a prime order or not once theNr+m(i+nj)
is found for a single D ∈ JC(Fq). Thus, in construction
of secure curves, one can abandon the curves with non-
prime orders and only looking for prime orders.

This algorithm costs O(q3/4/
√
m) according to (7).

5. An Improved Baby Step Giant Step Algo-
rithm

It can be noticed that in Algorithm 1 in Sect. 3, the
residues modulo m of si for χq(X) in (2) as well as
#JC(Fq) mod m can also be obtained by using either
Schoof-like algorithm or the Cartier-Manin operator.

In this section, we propose an improved baby step
giant step algorithm which makes effectively use of the
residues si mod m. In such a way, this algorithm speeds
up the baby step giant step algorithm in Sect. 4 and
other square-root algorithms by a factor O(

√
m).

First of all, the boundaries of si are given by
Lemma 1.

Lemma 1. s1 is bounded by

s1l ≤ s1 ≤ s1u, (12)
s1l = −�4√q� , s1u = �4√q� ,

and s2 is bounded by

s2l ≤ s2 ≤ s2u, (13)

s2l = 
2√q|s1| − 2q� , s2u =
⌊

1
4
s21 + 2q

⌋
.

Proof. The boundaries in (12) are well known, cf. [29].
The upper bound in (13) is shown by Elkies [7] without
proof, and the lower bound was pointed out to the au-
thors by Fumiyuki Momose. Bellow is a proof follows
him for (13).

Let α, αρ, β, βρ be the eigenvalues of the q-th power
Frobenius endomorphism of JC , where ρ is complex
conjugate. Let a1 = α+ αρ and a2 = β + βρ. Then

s1 = a1 + a2,
s2 = a1a2 + 2q,

ai ∈ R, and |ai| ≤ 2
√
q, because |α|=|β|= √

q [29].
Therefore,

0 ≤ 1
4

(a1 − a2)2 =
1
4

(a1 + a2)2 − a1a2

=
1
4
s21 − s2 + 2q (14)

then s2 ≤ s2u.
If a1 ≥ 0 and a2 ≥ 0,

s2 − 2
√
qs1 + 2q = (a1 − 2

√
q)(a2 − 2

√
q) ≥ 0

then s2 ≥ s2l. If a1 < 0 and a2 < 0,

s2 + 2
√
qs1 + 2q = (a1 + 2

√
q)(a2 + 2

√
q) ≥ 0

then s2 ≥ s2l also. Finally, assume a1 ≥ 0 and a2 < 0.
Then

−s2 + 2
√
qs1 − 2q = (a1 − 2

√
q)(−a2 + 2

√
q) ≤ 0

which leads to s2 ≥ s2l again, if s1 ≥ 0. Moreover we
also have

−s2 − 2
√
qs1 − 2q = −(a1 + 2

√
q)(a2 + 2

√
q) ≤ 0

which leads to s2 ≥ s2l, if s1 ≤ 0. �

Remark 1. This sharper bound of (13) is used in the
algorithm 2 shown belows. The practical speed of the
algorithm is roughly three times faster than using the
well-known bound |s2| ≤ 6q, cf. [17].

Now let s′i ∈ Z such that

0 ≤ s′i < m, (15)
s1 = s′1 +mt1, t1 ∈ Z, (16)
s2 = s′2 +mt′2, t

′
2 ∈ Z. (17)

Then t1 in (16) is bounded by⌊s1l

m

⌋
≤ t1 ≤

⌊s1u

m

⌋
(18)

due to (12) and t′2 in (17) is bounded by⌊s2l

m

⌋
≤ t′2 ≤

⌊s2u

m

⌋
(19)

due to (13). Moreover let t2, t3 be integers such that

t′2 = t2 + nt3, t2, t3 ∈ Z, (20)
0 ≤ t2 < n (21)

for a positive integer n, then t3 is bounded by⌊ s2l

mn

⌋
− 1 ≤ t3 ≤

⌊ s2u

mn

⌋
(22)

due to (19).
Consequently we have

#JC(Fq) = q2+1−s′1(q+1)
+ s′2−m(q+1)t1+mt2+mnt3 (23)
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by substituting (16), (17), (20) into (3). Hence
#JC(Fq) can be computed by finding (t1, t2, t3) sat-
isfying

(q2 + 1 − s′1(q + 1) + s′2 −m(q + 1)t1 +mnt3)D
= −mt2D (24)

for all D ∈ JC(Fq) in the ranges of (18), (21), (22).
These computations are carried out by collision search-
ing between the LHS and the RHS of (24).

Next we determine the most effective value of n.
The number of the pairs (s1, s2) satisfying (12) and

(13) is roughly 32q3/2/3 because
∫ s1u

s1l

1
4
s21 + 2q − (2

√
q|s1| − 2q)ds1

=
[
s1(

1
12
s21 −

√
q|s1| + 4q)

]s1u

s1l

≈32q3/2/3. (25)

Therefore the number S of the triples (t1, t2, t3) is

S ≈ 32q3/2

3m2
. (26)

Now we set n as

n0 ≈
√
S =

4
√

6q3/4

3m
(27)

then the number of point additions for all (t1, t2, t3)
satisfying (12) and (13) is roughly n on both the LHS
and the RHS of (24). The algorithm under this setting
works most efficiently. Therefore the computational
complexity of the algorithm is O(q3/4/m) according to
(27). Thus, using this algorithm in the square-root al-
gorithm part of the Gaudry-Harley scheme, the compu-
tation of #JC(Fq) is O(

√
m) times faster than by the

original baby step giant step algorithm in Sect. 4 and
other square-root algorithms.

Algorithm 2 shows an application of the proposed
algorithm in the Gaudry-Harley point counting scheme
to compute prime orders.

Remark 2. If q ≤ 131 then H0 > 2L0 and it is possi-
ble that Algorithm 2 outputs a wrong answer. Namely
if one chooses D ∈ JC [r] in Step 3 from JC and
#JC(Fq) = rs where r > L0 is a prime number and
s > 1 then Algorithm 2 outputs r. However, this situ-
ation can be easily checked out.

Remark 3. Although si obtained from the proposed
algorithm are not always correct, the correct values
can be easily obtained by an additional test using a
quadratic twist of the curve. See [7], [18].

Remark 4. The algorithm proposed in this section costs
O(qg(g+1)/8/mg/2) time for genus g curves. On the
other hand the original algorithm shown in the section
4 costs O(q(2g−1)/4/

√
m). Therefore, for genus g > 2

curves, the proposed algorithm is faster than the origi-
nal algorithm in the cases of m = Ω(qε+(g−2)/4) for any

Algorithm 2: An improved baby step giant step algo-
rithm for finding prime order curves.
Input: A genus 2 HEC C/Fq with q ≥ 137, m, s′1, s′2 ∈ Z>0

such that si ≡ s′i mod m and 0 ≤ s′i < m
Output: #JC(Fq), if it is a prime number

1: n←
j
4
√
6q3/4/(3m)

m

2: l← q2 + 1− s′1(q + 1) + s′2
3: Choose a random D ∈ JC(Fq)\{0}
4: B ← {(bj = −jmD, j) | 0 ≤ j < n}
5: Sort the table B by the entry bj

6: D1 ← lD
7: for i = −
�4√q�/m� . . . �4√q/m� do
8: D2 ← D1 − im(q + 1)D
9: s1 ← s′1 + im
10: for k = �(
2√q|s1|� − 2q)/(mn)� − 1 . . . �(�s2

1/4� +
2q)/(mn)� do

11: D3 ← D2 + kmnD
12: if ∃j such that bj = D3 then
13: l← l+ (−i(q + 1) + j + kn)m
14: if l = a prime number then
15: Output l as #JC(Fq) and terminate
16: else
17: #JC(Fq) is not a prime number and terminate
18: end if
19: end if
20: end for
21: end for

ε > 0. In the other cases, for the proposed algorithm
to outperform the original algorithm, one needs to e.g.
make further usage of the properties described in the
Remark 3.

6. Implementation and Construction of Prime
Order Curves

Algorithm 2 is implemented to construct genus 2 prime
order hyperelliptic curves. In order to obtain si mod m,
we also implemented the computation of both si mod 2
and si mod p by the Cartier-Manin operator.

6.1 Computation of si mod 2

For construction of prime order curves, one can actually
use only curves of which the residues of si modulo 2 are
determined by 2 � #JC(Fq), according to the following
lemma.

Lemma 2. The following conditions are equivalent:

1. #JC(Fq) is odd.
2. F is irreducible over Fq.
3. Each si is odd.

Proof. 1.⇔ 2.: See [18].
3.⇒ 1.: #JC(Fq) is odd iff s2 is odd from (3), so that
#JC(Fq) is odd, if each si is odd.
1.⇒ 3.: If 2 | s1 then 2 | #JC(Fq3) from

#JC(Fq3)

= #JC(Fq) × (q4−q2+1+2s22−#JC(Fq)s2
+ s1(q3+1−2q(q+1)+s1(q2−q+1))).
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Then there exists α ∈ Fq6 such that F (α) = 0, so that
α belongs to either Fq2 or Fq3\Fq because degF = 5.
On one hand, if α ∈ Fq2 then 2 | #JC(Fq). On the
other hand, if α ∈ Fq3\Fq then F can be factored as
F = GH, where G,H ∈ Fq[X] with G(α) = 0 and
degH = 2, and a root of H belong to Fq2 , so that
2 | #JC(Fq) also. �

Below, we choose irreducible F in the definition
equation (1) of curves and set si ≡ 1 mod 2.

6.2 Computation of si mod p

We compute si mod p by using the Cartier-Manin op-
erator [11], [14], [22], [23], [31].

When the characteristic p is large, the dominant
part of the Cartier-Manin operator computation is to
compute

U =
∑

uiX
i = F (p−1)/2 (28)

for F in (1). This computation itself can be efficiently
carried out using FFT multiplication. It is sufficient to
compute only up−2, up−1, u2p−2, u2p−1 to determine
si mod p.

One of the anonymous referees suggests that this
computation can be done more efficiently by Euler’s re-
currence formula described in Chapter 4 of [8]. This
method needs mod p2 operations besides the usual
mod p operations. On the other hand, its overall cost
is O(p) instead of O(p log p) and it requires only con-
stant amount of memory. Thus we used this method in
computation of up−2, up−1, u2p−2, u2p−1.

6.3 Implementation of Algorithm 2

Algorithm 2 is speeded up by using the following tech-
niques in implementation.

1. Both the computational time and the required
memory can be reduced by a factor roughly 1/

√
2

using of the property that −D can be obtained
easily from a given D ∈ JC(Fq). This is done by
choosing n =

√
2n0, the boundaries of t2 to be

−n ≤ t2 ≤ n − 1, and the condition of j in Step
12 to be Bj = ±D3 and so on. See [25], [28] for
further details.

2. Although Algorithm 2 is designed to minimize the
cost of the worst case computation, it is more ap-
propriate to design an algorithm minimizing the
average cost for computation of prime order curves.
One can minimize the average cost by choosing
n = (1/

√
2)n0 [2], [30]. This reduces the average

time by a factor roughly 2
√

2/3 and the required
memory by a factor roughly 1/

√
2.

3. We use a 32-bit hash value of bj in the table B
and the precomputation table described in [21] to
reduce the required memory.

4. Since practical speed of Algorithm 2 depends on
the addition speed on JC(Fq), we use an improved
Harley addition algorithm shown in [24].

5. The algorithm is terminated once one checked out
that JC(Fq) has a non-prime order.

Remark 5. The average time is reduced by a fac-
tor roughly 2/3 and the required memory is reduced
roughly to a half, by using the techniques of 1. and 2.
simultaneously, here n = n0 is used.

6.4 Implementation Results

The results shown in this section include: two exam-
ples of genus 2 hyperelliptic curves with prime orders
constructed by Algorithm 3 an example of 160 bit or-
der of a genus 2 hyperelliptic curve computed by ap-
plying the Gaudry-Harley’s Schoof-like algorithm and
the proposed algorithm simultaneously, and timings to
compute these orders. NTL [27] is used for finite field
and polynomial operations.

Algorithm 3: Construction of a prime order genus 2
hyperelliptic curve.
Input: A finite field Fq and p = char(Fq)
Output: A prime order curve C and #JC(Fq)
1: repeat
2: Choose a monic irreducible polynomial F/Fq , degF = 5

randomly
3: C : Y 2 = F
4: Compute sCMi ≡ si mod p, 0 ≤ sCMi < p by using the

Cartier-Manin operator
5: m← 2p, s′i ← sCMi if 2 � sCMi, else s′i ← sCMi + p
6: Compute #JC(Fq) by Algorithm 2
7: until #JC(Fq) = a prime number
8: Output C and #JC(Fq)

Example 1. A 123-bit prime order Jacobian variety of
the following curve

C1/Fq : Y 2 = F1(X),
F1 = X5 + (1154721α2 + 240985α+ 1084256)X4

+(737339α2 + 426915α+ 410309)X3

+(432186α2 + 1175381α+ 162117)X2

+(1082439α2 + 231901α+ 16392)X
+670097α2 + 295934α+ 569191

is obtained by Algorithm 3, where

p = 1342181, Fq = Fp(α),

α3 + 808659α2 + 445314α+ 844247 = 0.

The order of JC1(Fq) is

#JC1(Fq) = 5846103767676896833614385889373
401461.
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Table 1 Timing of computing #JC1(Fq) on
Athlon XP 2000+.

Algorithm Step Time

Algorithm 3 Step 4 1m 14s
Algorithm 2 Step 4 28m 18s

Step 5 1m 32s
Step 6–Step 21 32m 42s

Total 1h 3m 46s

Table 2 Timing of computing #JC2(Fq) on Alpha
21264/667MHz.

Algorithm Step Time

Algorithm 3 Step 4 3m 19s
Algorithm 2 Step 4 5h 29m 57s

Step 5 19m 56s
Step 6–Step 21 9h 17m 5s

Total 15h 10m 17s

The computation of #JC1(Fq) took about 64 min-
utes on Athlon XP 2000+ (1667 MHz) and less than
1GB memory. Table 1 shows the timing of main parts of
Algorithm 3 and Algorithm 2 for computing #JC1(Fq).

Example 2. A 135-bit prime order Jacobian variety of
the following curve

C2/Fq : Y 2 = F2(X),
F2 = X5 + (2817153α2 + 3200658α+ 1440424)X4

+(3310325α2 + 481396α+ 1822351)X3

+(108275α2 + 120315α+ 469800)X2

+(2168383α2 + 1244383α+ 5010679)X
+4682337α2 + 53865α+ 2540378

is obtained by Algorithm 3, where

p = 5491813, Fq = Fp(α),

α3 + 4519302α2 + 3749080α+ 607603 = 0.

The order of JC2(Fq) is

#JC2(Fq)

= 27434335457581234045473311611818187339271.

The computation of #JC2(Fq) took about 15 hours
on Alpha 21264/667 MHz and less than 2GB memory.
Table 2 shows the timing of main parts of Algorithm 3
and Algorithm 2 for computing #JC2(Fq).

Example 3. A 160-bit (but non-prime) order is ob-
tained by using both the Gaudry-Harley’s Schoof-like
algorithm and the proposed algorithm simultaneously.
For the computation of the Gaudry-Harley’s Schoof-
like algorithm, we used Magma V.2.8 [3] and its inner
package of the Gaudry-Harley’s Schoof-like algorithm
written by Gaudry.

For the curve

Table 3 Timing of computing #JC3(Fq)
on Athlon XP 2000+.

Algorithm l / Step Time

Schoof-like 3 13s
5 9m 39s
7 2h 30m 29s
11 11d 14h 22m 3s
13 9d 1h 10m 19s

Algorithm 3 Step 4 1m 1s
Algorithm 2 Step 4 58m 7s

Step 5 2m 52s
Step 6–Step 21 33m 34s

Total 20d 19h 48m 17s

C3/Fq : Y 2 = F3(X),
F3 = X5

+(917060α3 + 614005α2 + 1015600α+ 259417)X3

+(762193α3 + 746826α2 + 86760α+ 91163)X2

+(479517α3 + 775547α2 + 362123α+ 634715)X
+730866α3 + 778219α2 + 936773α+ 106583

the order of the Jacobian variety is obtained as

#JC3(Fq) =14614458863995015924501268703363

80444689451578297

=1667× 3323× 1109653
× 1453706062552087
× 163550925035311435747

where

p = 220 − 5, Fq = Fp(α),

α4+278680α3+445675α2+218811α+653340=0.

The computation of #JC3(Fq) took about 21 days
on Athlon XP 2000+ and less than 500 MB memory.
Table 3 shows the timing of main parts to compute
#JC3(Fq).

Remark 6. In the Schoof-like algorithm of Example 3,
the computation for l = 11 is slower than for l = 13.
This is because that Gaudry-Harley’s Schoof-like algo-
rithm needs to find l-torsion points defined over certain
extension of Fq, so that the cost depends on the min-
imal degree of the extension over which the l-torsion
points exist. In Example 3, the minimal degree is 2 for
l = 13 and 305 for l = 11.

Remark 7. All above examples are only to show the
practical performance of the proposed algorithm. The
curves Ci obtained in the examples should not be used
in cryptosystems. In fact, the orders of both JC1 and
JC2 are not large enough for cryptographic usage, the
order of JC3 does not contain a prime factor which is
large enough for cryptographic usage.

The definition fields of all Ci are small extensions
of prime fields therefore they may not secure against
certain potential Weil descent attacks.
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7. Conclusion and Outlook

This paper proposed an improvement of the baby step
giant step algorithm for point counting of hyperellip-
tic curves over finite fields. In construction of secure
hyperelliptic curves of genus 2, with knowledge of the
residues modulo m of the characteristic polynomials of
the Frobenius endomorphisms, the new algorithm can
speed up searching by a factorm, instead of

√
m in orig-

inal square-root algorithms. Moreover the algorithm is
implemented to find a 135-bit prime order curve.

Computation of an order of a hyperelliptic curve
in the size of cryptographic usage is possible if both
the algorithm proposed in this paper and the Gaudry-
Harley’s Schoof-like algorithm are used simultaneously.
However, computation of the residues modulo a prime
l by the Schoof-like algorithm becomes impractical for
large l. Thus, it seems difficult at present to use these
algorithms to find a curve which is cryptographically
interesting.

On the other hand, if one could somehow compute
the residues modulo l of si for l up to 31, then combin-
ing with the proposed algorithm, it will be possible to
efficiently compute 160-bit orders for curves over prime
fields. In fact, the memory required by the proposed
algorithm will be less than 150 MB.
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