
SCIS 2002 The 2002 Symposium on
Cryptography and Information Security

Shirahama,Japan, Jan.29-Feb.1,2002
The Institute of Electronics,

Information and Communication Engineers

An improved baby step giant step algorithm

for point counting of hyperelliptic curves over finite fields

Kazuto Matsuo ∗ Jinhui Chao † Shigeo Tsujii ‡

Abstract— Counting the number of points on the Jacobian varieties of hyperelliptic curves over
finite fields is necessary for construction of hyperelliptic curve cryptosystems. Recently Gaudry and
Harley proposed a practical algorithm for point counting of hyperelliptic curves. In the Gaudry–Harley
algorithm, the residue modulo m,m ∈ Z>0 of the order of a given Jacobian variety are computed at
first, then the order is computed by a search algorithm with square-root complexity, using its modulo
m residue. In fact, the parallelized λ–method is applied as the square-root algorithm in their algorithm.
However the square-root algorithm part of the Gaudry–Harley algorithm took 50CPU days to compute
an order of 127 bits.

This paper proposes an improvement of the baby step giant step algorithm for point counting of
hyperelliptic curves and shows that the proposed algorithm carries out faster point counting than the
Gaudry–Harley algorithm. Moreover, implementation results of the proposed algorithm is presented.
A 135 bits order is computed in 16 hours on Alpha 21264/667MHz by using the proposed algorithm.

Keywords: Hyperelliptic curves, Point counting algorithm, Baby step giant step algorithm,
Cartier–Manin operator, Schoof–like algorithm

1 Introduction

Security of a hyperelliptic curve cryptosystem de-
pends in an essential way on the order of the Jacobian
variety of the hyperelliptic curve used in the system.
In particular, it is believed that for hyperelliptic curve
cryptosystems using small genera curves, if the orders
of their Jacobian varieties are enough large prime num-
bers and are coprime to the characteristic of the def-
inition finite fields, then they are secure against any
known attacks except maybe the Weil–Descent attacks.
Therefore, computation of the orders of the Jacobian
varieties for given random hyperelliptic curves is one of
most important subject to construct hyperelliptic curve
cryptosystems.
Recently several researches have been reported on

point counting algorithms. Especially, efficient algo-
rithms [Ked01, Gau01, GG01] have been proposed for
curves over small characteristic finite fields and using
these algorithms, it is possible to compute orders of
Jacobian varieties over such fields, in sizes for crypto-
graphic usage (e.g. 160 bits orders).
On the other hand, the situation is quite different

on point counting of curves over finite fields with ar-
bitrary characteristic. Although a number of theoret-
ical results such as [Pil90, Kam91, AH96, HI98] have
been known, it is only until very recent that a practical

∗ Research and Development Initiative, Chuo University, 42-8
Ichigaya Honmuracho, Shinjuku-ku, Tokyo, 162-8473 Japan

† Depertment of Electrical, Electronic, and Communication En-
gineering, Faculity of Science and Engineering, Chuo Univer-
sity, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551 Japan

‡ Depertment of Information and System Engineering, Faculity
of Science and Engineering, Chuo University, 1-13-27 Kasuga,
Bunkyo-ku, Tokyo, 112-8551 Japan

point counting algorithm for curves over large charac-
teristic finite fields is proposed by Gaudry and Haley
[GH00, Gau00].
In the Gaudry–Harley algorithm, the residue mod-

ulo m,m ∈ Z>0 of the order of a given Jacobian va-
riety is computed at first, then the order is computed
by a search algorithm of square root complexity, us-
ing its modulo m residue. (We will misuse the square-
root algorithm refering to these kind of search algo-
rithms hereafter.) This is a natural generalization of
the point counting algorithm of elliptic curves pro-
posed in [MVZ93] for hyperelliptic curves. However,
the Gaudry–Harley algorithm is not yet able to com-
pute orders in sizes for cryptographic usage. Their al-
gorithm took 50CPU days for the square root algorithm
part to compute a 127 bits order.
This paper proposes an improvement of the baby

step giant step algorithm, (which is also one of the
square-root algorithms), for point counting of hyper-
elliptic curves and then shows that the proposed algo-
rithm carries out faster point counting of hyperelliptic
curves than the Gaudry–Harley algorithm. Moreover,
implementation results of the proposed algorithm are
also presented. A 135 bits order is computed in 16
hours on Alpha 21264/667MHz by using the proposed
algorithm.

2 Hyperelliptic curves and the orders
of their Jacobian varieties

Let p be an odd prime, Fq a finite field of order q
with char(Fq) = p. Let g be a positive integer. Then a

Input: genus 2 HEC C/Fq

Output: #JC(Fq)
1: Compute #JC(Fq) mod 2e by the halving algo-

rithm
2: for prime numbers l = 3, 5, . . . , lmax do
3: Compute χq(X) mod l by a Schoof-like algo-

rithm
4: Compute #JC(Fq) mod l from χq(X) mod l
5: end for
6: Compute χq(X) mod p by using the Cartier-Manin

operator
7: Compute #JC(Fq) mod p from χq(X) mod p
8: Compute #JC(Fq) mod m,m = 2e ·3 · · · lmax ·p by

CRT
9: Compute #JC(Fq) by a square root algorithm us-

ing #JC(Fq) mod m

Algorithm 1: Gaudry-Harley point counting algo-
rithm

genus g hyperelliptic curve C/Fq is defined as follows:

C :Y 2 = F (X),

F (X) = X2g+1 + f2gX
2g + · · ·+ f0, (1)

where fi ∈ Fq, disc (F) �= 0.
We restrict ourselves to g = 2 for simplicity.
Let JC be the Jacobian variety of C, JC(Fq) its Fq-

rational points. It is known that JC(Fq) is a finite
Abelian group, so that discrete logarithm based crypto-
systems can be construct on it.
The characteristic polynomial χq(X) of the qth

power Frobenius endomorphism of JC is given as fol-
lows [Sti93, Kam91]:

χq(X) = X4 − s1X
3 + s2X

2 − s1qX + q2, (2)

where si ∈ Z and

|s1| ≤ 4
√
q, (3)

|s2| ≤ 6q. (4)

Then the order #JC(Fq) of JC(Fq) is obtained as

#JC(Fq) = χq(1)

= q2 + 1− s1(q + 1) + s2 (5)

from χq(X) [Sti93]. It is known that #JC(Fq) is
bounded within the Hasse–Weil range:

Lo =
⌈
(
√
q − 1)4

⌉ ≤ #JC(Fq) ≤ Ho =
⌊
(
√
q + 1)4

⌋
.

(6)

3 The Gaudry–Harley algorithm

This section gives rough descriptions of the Gaudry–
Harley algorithm and its implementation results ac-
cording to [GH00, Gau00]. (Refer to [GH00, Gau00]
for further details).
In the Algorithm 1, we show an outline of the

Gaudry–Harley algorithm.
The largest computable values of lmax in the Step 2

of the Algorithm 1 depend on many factors such as the

size of Fq . However, for construction of secure curves,
lmax = 13 at the present. The computation of the
Cartier–Manin operator appeared in the Step 6 costs
exponential time in log p, so that the computation is
impossible for curves over prime fields with large size
such as in cryptographic usage. Therefore the Step 6
and 7 are skipped when the algorithm is applied for
curves over prime fields. For the details of the Cartier–
Manin operator and its computation are referred to
[Man63, Man65, Yui78, GH00, Gau00].
Gaudry and Harley computed the orders of the Ja-

cobian varieties of hyperelliptic curves over a 64 bits
prime field and a degree 3 extension of a 16 bits prime
field respectively. The orders are 127 bits and 128 bits
respectively, and these results seemed to be present
records of point counting of hyperelliptic curves over
prime field and over large characteristic field [Wen01].
However, it is still impractical to construct se-

cure hyperelliptic curve cryptosystems by using the
Gaudry–Harley algorithm. For an example, their algo-
rithm took 50CPU days in the Step 9 when they com-
puted the 127 bits order. In fact, the point counting
algorithms have to be repeated before a secure curve is
found.

4 A baby step giant step algorithm us-
ing #JC(Fq) mod m

It is known that comparing with the baby step gi-
ant step algorithm, the parallelized λ–method used in
the Step 9 in the Algorithm 1 possesses merits such as
can be parallelized and and take only constant memory
space. While the computational complexities in CPU
time of both algorithms remain essentially the same.
In this section, as a preliminary to the following sec-

tions, we describe a variation of the standard baby step
giant step algorithm which can be used in the Step 9
in the Algorithm 1. This algorithm is an extension of
the algorithm that has been applied for point counting
of elliptic curves shown in [MVZ93].
We can assume that Nr ∈ Z such that

#JC(Fq) = Nr +mNm, 0 ≤ Nr < m (7)

is given in the Step 9 of the Algorithm 1. Therefore
#JC(Fq) can be obtained by searching Nm among

	Lo/m
 ≤ Nm ≤ 	Ho/m
 . (8)

Now we set n ≈ √Ro, where

Ro ≈ (Ho − Lo)/m = 8q3/2/m+ O(q/m). (9)

Then Nm = i + nj can be computed by finding (i, j)
such that

(Nr +mi)D = −mnjD (10)

for ∀D ∈ JC(Fq) by searching a collision between the
lhs and the rhs of (10) among

0 ≤i < n, (11)⌊
Lo

mn

⌋
− 1 ≤j ≤

⌊
Ho

mn

⌋
. (12)

Consequently we can compute #JC(Fq) from the pair
(i, j) obtained by the above computation as follows:

#JC(Fq) = Nr +m(i+ nj). (13)

This algorithm costs O(q3/4/
√
m) due to (9).

Unfortunately more than one D ∈ JC(Fq) should be
used in order to determine (i, j) uniquely in general
[Coh93]. However to apply (10) to a D ∈ JC(Fq)\{0},
we can decide whether #JC(Fq) is a prime number or
not, then compute #JC(Fq) when #JC(Fq) is a prime
number. This is sufficient for application to crypto-
systems. Therefore we hereafter assume such situation
for simplicity.

5 An improved baby step giant step al-
gorithm

In the Algorithm 1 in the section 3, the residues mod-
ulom of si for χq(X) in (2), as well as #JC(Fq) mod m,
can be obtained by either the Schoof-like algorithm or
the Cartier–Manin operator.
Thereupon this section proposes an improved baby

step giant step algorithm, which uses effectively the
residues si mod m and is faster than the baby step gi-
ant step algorithm shown in the section 4.
Firstly, we show tighter estimates of the boundaries

of si in (3), (4) in the following lemma.

Lemma 1. The s1 in (2) is bounded by

s1l = −	4√q
 ≤ s1 ≤ s1u = 	4√q
 (14)

and the s2 by

s2l = �2√q|s1| − 2q� ≤ s2 ≤ s2u =
⌊
1
4
s21 + 2q

⌋
.

(15)

Remark 1. The upper bound in (15) is due to [Elk95].
The lower bound was pointed out to the authors by
Prof. Fumiyuki Momose.

Now we assume that s′i ∈ Z which satisfy the follow-
ing equations are given.

0 ≤ s′i < m, (16)
s1 = s′1 +mt1, t1 ∈ Z, (17)
s2 = s′2 +mt′2, t

′
2 ∈ Z (18)

Then the t1 in (17) is bounded by

L1 =
⌊s1l

m

⌋
≤ t1 ≤ H1 =

⌊s1u

m

⌋
(19)

due to (14) and the t′2 in (18) is bounded by

L′
2 =

⌊s2l

m

⌋
≤ t′2 ≤ H ′

2 =
⌊s2u

m

⌋
(20)

due to (15). Moreover let t2, t3 be integers which satisfy

t′2 = t2 + nt3, t2, t3 ∈ Z, (21)
0 ≤ t2 < n (22)

for a positive integer n, then t3 is bounded by

L3 =
⌊ s2l

mn

⌋
− 1 ≤ t3 ≤ H3 =

⌊ s2u

mn

⌋
(23)

due to (20).
Consequently we have

#JC(Fq) =

q2+1−s′1(q+1)+s′2−m(q+1)t1+mt2+mnt3
(24)

by substituting (17), (18), (21) to (5). Hence #JC(Fq)
can be computed by finding (t1, t2, t3) satisfying

(q2+1−s′1(q+1)+s′2−m(q+1)t1+mnt3)D = −mt2D
(25)

for ∀D ∈ JC(Fq) among the ranges in (19), (22), (23).
These computations are executed by collision searching
between the lhs and the rhs of (25).
Next we determine the most effective value of n.
The number of the pairs (s1 , s2) is roughly 32q3/2/3

because∫
1
4
s21 + 2q − (2

√
q|s1| − 2q)ds1

= s1(
1
12
s21 −

√
q|s1|+ 4q). (26)

Therefore the number S of the triples (t1, t2, t3) is

S ≈ 32q3/2

3m2
. (27)

Now we set n as

n ≈
√
S =

4
√
6q3/4

3m
(28)

then the number of point additions for all (t1, t2, t3) is
roughly n in both the lhs and the rhs of (26). The
algorithm under this setting works the most efficiently.
Therefore the computational complexity of the algo-
rithm is O(q3/4/m) due to (28) and the computation
of #JC(Fq) by the algorithm is O(

√
m) times faster

than the algorithm shown in the section 4.
To examplify the proposed algorithm, its application

to prime order computation is shown in the Algorithm
2.

Remark 2. The si which are obtained in the process
of the algorithm shown in this section are not always
correct values [Elk95]. The algorithm should be slightly
modified in order to find correct si.

Remark 3. The algorithm proposed in this section
costs O(qg(g+1)/8/mg/2) time for genus g curves. On
the other hand the algorithm shown in the section 4
costs O(q(2g−1)/4/

√
m). Therefore, the proposed algo-

rithm is faster than the previous algorithm in the case
of m > q(g−2)/4 for genus g > 2 curves. In the case of
m ≤ q(g−2)/4, in order that the proposed algorithm is
faster than the previous algorithm, one needs e.g. take
the properties described in the Remark 2 into consid-
eration.

Input: A genus 2 HEC C/Fq, m, s′1, s′2 ∈ Z>0 such
that si ≡ s′i mod m and 0 ≤ s′i < m

Output: #JC(Fq), if it is a prime number
1: n← ⌊

4
√
6q3/4/(3m)

⌉
2: l ← q2 + 1− s′1(q + 1) + s′2
3: Choose a random D ∈ JC(Fq)\{0}
4: B ← {(Bj = −jmD, j) | 0 ≤ j < n}
5: Sort B by Bj

6: D1 ← lD
7: for i = −�	4√q
/m� . . . 	4√q/m
 do
8: D2 ← D1 − im(q + 1)D
9: s1 ← s′1 + im

10: for k = 	(�2√q|s1|� − 2q)/(mn)
 −
1 . . .	(s21/4
+ 2q)/(mn)
 do

11: D3 ← D2 + kmnD
12: if ∃j such that Bj = D3 then
13: l← l + (−i(q + 1) + j + kn)m
14: if l = a prime number then
15: Output l as #JC(Fq) and terminate
16: else
17: #JC(Fq) is not a prime number and ter-

minate
18: end if
19: end if
20: end for
21: end for
Algorithm 2: An improved baby step giant step al-
gorithm for finding prime order curves

6 Implementation and construction of
prime order curves

The Algorithm 2 is implemented to construct genus 2
prime order hyperelliptic curves. We also implemented
computation of both si mod 2 and si mod p by the
Cartier–Manin operator in order to obtain si mod m.

6.1 Computation of si mod 2

The halving algorithm used to compute
#JC(Fq) mod 2e by Gaudry and Harley cannot
compute si mod 2e. However, for construction of
prime order curves, the residues modulo 2 are in
fact fixed when 2 � #JC(Fq). Below, we selected
irreducible F and set si ≡ 1 mod 2 according to the
Lemma 2.

Lemma 2.

2 � #JC(Fq)⇔ F : irreducible/Fq ⇔ 2 � si (29)

Remark 4. Dr. Seigo Arita pointed out to the authors
that the residues si mod 2 are completely determined
from the factors of F .

6.2 Computation of si mod p

We computed si mod p by using the Cartier–Manin
operator [Man63, Man65, Yui78, GH00, Gau00].
The dominant part of Cartier–Manin operator com-

putation is to compute

U =
∑

uiX
i = F (p−1)/2 (30)

for F in (1), when the characteristic p is large. This
computation itself can be efficiently executed by the
FFT multiplication. Here we speed up it even further
by the following tricks. We firstly compute

V =
∑

viX
i =

{
F (p−1)/4, if 4 | p− 1
F (p−3)/4, if 4 � p− 1

(31)

by the FFT multiplication. Then it is sufficient to
compute only up−2, up−1, u2p−2, u2p−1 to determine
si mod p, from vi, fi as

U =

{
V 2, if 4 | p− 1.
FV 2, if 4 � p− 1.

(32)

This technique can reduce both the computational time
and the required memory space needed by the original
version using FFT by roughly 1/2 times.

6.3 Implementation of the Algorithm 2

The Algorithm 2 is speeded up by using the following
techniques in the implementation.

1. Both the computational time and the required
memory space can be reduced by roughly 1/

√
2

by use of the property that −D can be obtained
easily for given D ∈ JC(Fq). This is done by
choice of the value of n to be

√
2 times of the

value in the (28), and the boundaries of t2 to be
−n ≤ t2 ≤ n − 1, also the condition of j in the
Step 12 to be Bj = ±D3 and so on.

2. Although the Algorithm 2 is designed to mini-
mize the cost of the worst case computation, it
is more appropriate to design an algorithm mini-
mizing the average cost for computation of prime
order curves. We can minimize the average cost
by choice of the value of n as 1/

√
2 times of the

value in the (28) [Tes01]. This reduced both the
average time and the memory space by roughly
1/
√
2 times.

3. We use 32 bits hash values of −jmD in the ta-
ble B and the precomputation table described in
[LMMS94].

4. The practical speed of the Algorithm 2 depends
on the addition speed on JC(Fq). So we use
an improved Harley addition algorithm shown in
[MCT01].

5. The algorithm will terminated once one checked
out that JC(Fq) has a non-prime order.

Remark 5. Both the average time and the memory
space is reduced by roughly 1/2 times using the tech-
niques of 1. and 2. simultanously. The n in (28) is not
modified when both 1. and 2. are used.

6.4 Implementation results

The Algorithm 3 shows an outline of the construction
algorithm of prime order curves used in this section.

Input: A finite field Fq and p = char(Fq)
Output: A prime order curve C and #JC(Fq)
1: repeat
2: Choose a monic irreducible polynomial

F/Fq, degF = 5 randomly
3: C : Y 2 = F
4: Compute sCMi ≡ si mod p, 0 ≤ sCMi < p by

using the Cartier–Manin operator
5: m← 2p, s′i ← sCMi if 2 � sCMi, else s′i ← sCMi+

p
6: Compute #JC(Fq) by the Algorithm 2
7: until #JC(Fq) = a prime number
8: Output C and #JC(Fq)

Algorithm 3: Construction of a prime order genus 2
hyperelliptic curve

This section shows two examples of genus 2 hyper-
elliptic curves with prime orders constructed by the
Algorithm 3 and also timings to calculate their orders.
These computations are conducted on a Pen-

tium III/866MHz with 1GB RAM and a Alpha
21264/667MHz with 4GB RAM respectively. The NTL
[Sho01] is used for finite field and polynomial opera-
tions.

Example 1. A 123 bits prime order curve

C1/Fq : Y 2 = F1(X),

F1 = X5 + (567033α2 + 322876α+ 957805)X4

+ (1123698α2 + 933051α+ 141410)X3

+ (393269α2 + 233572α+ 708577)X2

+ (692270α2 + 350968α+ 788883)X

+ 968896α2 + 895453α + 589750

is obtained by the Algorithm 3, where

Fq = Fp(α),

α3 + 1073470α2 + 34509α+ 1223366 = 0,
p = 1342181.

The order of JC1 (Fq) is

#JC1(Fq) =
5846103764014694479322329315740285931.

The computation of #JC1(Fq) costs 197 minutes on
Pentium III/866MHz. The Table 1 shows the timing
of main parts of the Algorithm 3 and the Algorithm 2
for computing #JC1(Fq).

Example 2. A 135 bits prime order curve

C2/Fq : Y 2 = F2(X),

F2 = X5 +(2817153α2+3200658α+1440424)X4

+ (3310325α2 + 481396α+ 1822351)X3

+ (108275α2 + 120315α+ 469800)X2

+ (2168383α2 + 1244383α+ 5010679)X

+ 4682337α2 + 53865α+ 2540378

Algorithm Step Time (min.)
Algorithm 3 Step 4 7
Algorithm 2 Step 4 70

Step 5 1
Step 6 – Step 21 119

Total 197

Table 1: Timing of computing #JC1(Fq) on Pentium
III/866MHz

Algorithm Step Time (min.)
Algorithm 3 Step 4 42
Algorithm 2 Step 4 330

Step 5 20
Step 6 – Step 21 557

Total 949

Table 2: Timing of computing #JC2(Fq) on Alpha
21264/667MHz

is obtained by the Algorithm 3, where

Fq = Fp(α),

α3 + 4519302α2 + 3749080α+ 607603 = 0,
p = 5491813.

The order of JC2(Fq) is

#JC2(Fq) =
27434335457581234045473311611818187339271.

The computation of #JC2(Fq) costs 16 hours on Al-
pha 21264/667MHz. The Table 2 shows the timing of
main parts of the Algorithm 3 and the Algorithm 2 for
computing #JC2(Fq).

Remark 6. In both the Example 1 and 2, the giant
steps (Step 6–21 in Algorithm 2) were slower than the
baby steps (Step 4, 5 in Algorithm 2). However the
average cost of the giant steps is the same as of the
baby step. Moreover, the cost of the baby step is fixed
for a fixed definition field.

7 Conclusion

This paper proposed an improvement of baby step
giant step algorithm for point counting of hyperelliptic
curves over finite fields. This improved baby step gi-
ant step algorithm can construct secure hyperelliptic
curves of genus 2 more efficient than the previous algo-
rithms. Moreover an example of a 135 bit prime order
curve constructed by the improved baby step giant step
algorithm was shown.
Computation of an order of a hyperelliptic curve

in the size of cryptographic usage is possible if both
the algorithm proposed in this paper and the Gaudry-
Harley’s Schoof–like algorithm are used simultanously.
However further improvement of Schoof–like algorithm
is necessary in order to construct secure hyperelliptic
curves. This is because that the Gaudry-Harley’s
Schoof–like algorithm takes too long time for general

curves. This means that it will be difficult at this mo-
ment to use these algorithms to find a secure random
curve.

Acknowledgement

The authors would like to thank Prof. Fumiyuki Mo-
mose for pointing out the Lemma 1. The authors would
also like to thank Dr. Seigo Arita and Dr. Koh-ichi Na-
gao for their interesting discussions.
A part of this research was supported by Telecommu-

nications Advancement Organization of Japan (TAO).

References

[AH96] L. M. Adleman and M. D. Huang, Counting ra-
tional points on curves and Abelian varieties
over finite fields, ANTS-II (H. Cohen, ed.),
Lecture Notes in Computer Science, no. 1122,
Springer-Verlag, 1996, pp. 1–16.

[Coh93] H. Cohen, A course in computational algebraic
number theory, Graduate Text in Mathematics,
no. 138, Springer-Verlag, 1993.

[Elk95] N. D. Elkies, Elliptic and modular curves over
finite fields and related computational issues,
Computational perspectives on number theory
(D. A. Buell and J. T. Teitlbaum, eds.), AMS,
1995, pp. 21–76.

[Gau00] P. Gaudry, Algorithmique des courbes hyperel-
liptiques et applications à la cryptologie, Ph.D.
thesis, École polytechnique, 2000.

[Gau01] P. Gaudry, Algorithms for counting points on
curves, ECC2001, 2001.

[GG01] P. Gaudry and N. Gürel, An extension of
Kedlaya’s point–counting algorithm to superel-
liptic curves, Advances in Cryptology - ASI-
ACRYPT2001 (C. Boyd, ed.), Lecture Notes in
Computer Science, no. 2248, Springer-Verlag,
2001, pp. 480–494.

[GH00] P. Gaudry and R. Harley, Counting points on
hyperelliptic curves over finite fields, ANTS-
IV (W. Bosma, ed.), Lecture Notes in Com-
puter Science, no. 1838, Springer-Verlag, 2000,
pp. 297–312.

[HI98] M. D. Huang and D. Ierardi, Counting rational
point on curves over finite fields, J. Symbolic
Computation 25 (1998), 1–21.

[Kam91] W. Kampkötter, Explizite gleichungen für Ja-
cobische varietäten hyperelliptischer kurven,
Ph.D. thesis, GH Essen, 1991.

[Ked01] K. S. Kedlaya, Counting points on hyperelliptic
curves using Monsky–Washinitzer cohomology,
preprint, 2001.

[LMMS94] F. Lehmann, M. Maurer, V. Müller, and
V. Shoup, Counting the number of points on
elliptic curves over finite fields of characteristic
greater than three, ANTS-I (L.M. Adleman and
M.D.Huang, eds.), Lecture Notes in Computer
Science, no. 877, Springer-Verlag, 1994, pp. 60–
70.

[Man63] J. I. Manin, The theory of commutative formal
groups over fields of finite characteristic, Rus-
sian Mathematical Surveys 18 (1963), 1–83.

[Man65] J. I. Manin, The Hasse–Witt matrix of an alge-
braic curve, Trans. AMS 45 (1965), 245–264.

[MCT01] K. Matsuo, J. Chao, and S. Tsujii, Fast genus
two hyperelliptic curve cryptosystems, Technical
Report ISEC2001-31, IEICE Japan, 2001.

[MVZ93] A. Menezes, S. Vanstone, and R. Zuccherato,
Counting points on elliptic curves over F2m ,
Math. Comp. 60 (1993), 407–420.

[Pil90] J. Pila, Frobenius maps of Abelian varieties
and finding roots of unity in finite fields, Math.
Comp. 55 (1990), 745–763.

[Sho01] V. Shoup, A tour of NTL,
http://www.shoup.net/ntl/, 2001.

[Sti93] H. Stichtenoth, Algebraic function fields and
codes, Universitext, Springer-Verlag, 1993.

[Tes01] E. Teske, Square–root algorithms for the dis-
crete logarithm probrem (A survey), Tech. Re-
port CORR2001-7, CACR, U. Waterloo, 2001.

[Wen01] A. Weng, The CM–method for hyperelliptic
curves, ECC2001, 2001.

[Yui78] N. Yui, On the Jacobian varieties of hyper-
elliptic curves over fields of characteristic p > 2,
J. Algebra 52 (1978), 378–410.

