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A generalized Harley algorithm for genus two hyperelliptic curves
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Abstract— A fast addition algorithm for divisor classes of genus two hyperelliptic curves over finite
fields of odd characteristics was proposed by Harley in 2000. Since then several improvements of the
algorithm have been developed. Besides, extensions of the algorithm to the curves over finite fields
of characteristic two are proposed by these authors and Lange independently. However, it seems a
Harley algorithm for arbitrary characteristics has not yet been available until now. This paper shows
a generalization of the Harley algorithm to genus two hyperelliptic curves over finite fields of arbitrary

characteristics.
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1 Introduction

Hyperelliptic curve cryptosystems can be practically
implemented by using Cantor’s fast addition algorithm
for divisor class groups of hyperelliptic curves [1]. In
2000, a new fast addition algorithm for a genus two
hyperelliptic curve

Y2=X5+ fuX*+---+ fo, fi €F, (1)

over a finite field I, of odd characteristic was proposed
by Harley [2, 3, 4]. Hereafter, we will call it the Harley
algorithm.

The Harley algorithm extends the chord-tangent law
of elliptic curves to addition of divisor classes of hy-
perelliptic curves. In this algorithm, a divisor class is
represented by Mumford’s representation [5] similar to
the Cantor algorithm, but the input divisors are di-
vided into different cases, computation procedures for
each cases are optimized individually. Moreover, the
Chinese remainder theorem, the Newton iteration and
the Karatsuba multiplication are applied effectively to
speed up of the algorithm. As the result, the Harley
algorithm reduced significantly the computational cost
comparing with the Cantor algorithm.

In fact, an improved Harley algorithm shown in [6]
takes I +25M for an addition and I+28M (or I+26M
if f4 = 0) for a doubling, where I, M denote the costs
of an inversion and a multiplication over finite fields
respectively.

Moreover, [7] showed a variation of Harley algorithm
without inversions which is improved further in [8]. Be-
sides, extensions of Harley algorithm to hyperelliptic
curves over finite fields of characteristic two were shown
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by [6, 9] independently and [8] also showed an inver-
sionfree version algorithm for characteristic two.

So far, extensions of the Harley algorithm have been
developed separately for either odd characteristic case
or even characteristic case. A generalization of the
Harley algorithm for curves over finite fields of arbi-
trary characteristics, which is important for studies
of hyperelliptic curve cryptosystems, has not yet been
available until now.

This paper shows a generalization of the Harley al-
gorithm for genus two hyperelliptic curves over finite
fields of arbitrary characteristics. This algorithm takes
39A+1+28M+S for an addition and 59A+1+38M for
a doubling, where A, S denote the costs of an addition
and a squaring in a finite field respectively.

2 Preliminaries

2.1 Hyperelliptic curves
Let F; be a finite field of arbitrary characteristic.
A genus 2 hyperelliptic curve C over F, is defined as
follows:
C:Y?’+ HX)Y = F(X), 2)
H(X) = heX? + h X + ho,
F(X)=fsX°+ fuX* + -+ fiX + fo,

where h;, f; € F,, and (2) satisfies {(z,y) € qu | y? +
H(z)y+F(z) =2y+H(z) = H(z)y—F'(x) =0} = 0.
The curve (2) can be transformed into the form
C/F, :Y? + H(X)Y = F(X), (3)
H(X) = hoX? + h1 X + ho,
F(X) =X+ faX"+--+ X + fo

by the coordinate transformation

(X,Y) = (51X, £7°Y). (4)



Remark 1. The curve (3) can be further transformed
into the form

C/F, 'Y’ + H(X)Y = F(X), (5)
H(X)= X%+ hmhX + ho,
FX)=X+ fuX*+---+ iX + fo

by the coordinate transformation
(X,Y) = (hy*X, h3°Y). (6)

However, we will use (3) for the definition equation
of C in order to keep a general representation of the
inversion of a divisor as described 2.3.

Points on C are defined as
(z,y) €F,” st.y> + H(z)y — F(&) =0 ()

together with a point at infinity Py, on C.

For a point P = (z,y), —P = (x,—y — H(xz)) is also
on C and it is called the opposite of P. The opposite
of P, is defined as — Py, = P.

A point P such that P = —P is called a ramification
point. A ramification point P = (z,y) satisfies

2y + H(z) =0. (8)

Conversely, a point P is a ramification point if P sat-
isfies (8) or P = P..

2.2 Divisors and Jacobian variety

A divisor D on C is defined as a finite formal sum of
points on C'

D= ) ordp,(D)P;,ordp, (D) € Z. (9)
PcC

Divisors form an Abelian group ©.
The degree of D is defined as

degD = Z ordp, (D). (10)
P eC

Divisors with zero degree form a subgroup D° of D.
For a rational function f on C, a divisor (f) is defined
as

(f) =D _mpP = mq,Q;, (11)

where P; are zeros of f with multiplicities mp,, and
Q; are poles of f with multiplicities mq;. (f) is called
a principal divisor. The set of principal divisors is a
subgroup ® of D°.

The Jacobian variety of C' is defined as

Jo =2°/Dt. (12)

The divisor classes fixed by the gth-power Frobenius
map form a subgroup Jc(F,) of Jo. Jo(Fy) is a finite
Abelian group on which discrete logarithm problems
can be defined.

This paper will consider addition of elements in

jC(Fq)-

2.3 Divisor classes and its representation

For Dy, Dy € D°, if D; — Dy € D' then we write Dy ~
D>. Any divisor class in Jo(F,) can be represented by

D= Zimipi - (szz) Py, m; >0, (13)

where P; # —P; V i # j. A divisor in the form of (13)
is called a semi-reduced divisor. »,m; is called the
weight of D.

A semi-reduced divisor whose weight is less than or
equal to genus is called a reduced divisor. Any divi-
sor class in Jo(F,;) can be uniquely represented by a
reduced divisor.

A semi-reduced divisor D can be represented by a
pair of polynomials:

D= (U, V)7 (14)

where U,V € F,[X]. Denote P; = (z;,y:),

U=[[&X =)™, (15)
and V is the unique polynomial satisfies
F—HV —V?=0mod U,degV < degU.  (16)
Moreover, for P; = (z;,y;) in (13),
yi =V (zi)- (17)

We call such a representation of D by (14),(15),(16)
as Mumford’s representation [5].

For D = (U,V), U,V € F,[X] is equivalent to D €
Jc(F,). Therefore, we assume U,V € F,[X] hereafter.

For a weight two divisor D = (U, V),

—D = (U, hoU =V — H). (18)

In particular, if D = P, + P} — 2P, where both P,, P,
are ramification points, then —D = D. For a weight
one divisor D = (X + ug, vp),

-D = (X + ug, —Vp — H(—UO)) (19)

3 Harley algorithm

This section outlines the Harley algorithm for the
hyperelliptic curve (1) according to [2, 3, 4].

The semi-reduced divisors of (1) can be also rep-
resented by Mumford’s representation similar to (3).
Indeed, one can simply keep (15) but replace (16) with

F—V?=0mod U,degV < degU, (20)
and (18) with
-D = (U,-V). (21)

All I/O divisors Dl = (Ul,‘/l),Dg = (U2,‘/2)7D3 =
(Us,V3) are assumed to be reduced divisors. The
Harley algorithm assigns different computation proce-
dures to different input divisors for both operations of
addition D3 = D1 + Do and doubling Dy = 2Ds.



In the addition operation, if the size of the finite field
I, is large enough, both weights of D; and D> almost
always equal two. Besides, both D; and D> do not
contain the same point or the points opposite to each
other. In other words, D; and D, satisfy deglU; =
degUs; = 2 and ged(Uy,U2) = 1. The procedure of
addition for divisors satisfied these conditions consists
of a composition part and a reduction part.

In the composition part, a semi-reduced divisor D =
(U, V) such that D ~ —D3 and U = U;Us is computed.
V' can be obtained by the Chinese remainder theorem.
In the reduction part, one computes the reduced divisor
D3 such that D3 ~ —D.

In the doubling operation, if the size of the finite
field IF, is large enough, the weight of D; almost always
equals two. Besides, D; does not contain ramification
points except P. In other words, degU; = 2 and
ged(Uy, V1) = 1. Similar to the addition, the doubling
procedure for a divisor satisfied these conditions also
consists of a composition part and a reduction part.

The composition part can be obtained by replacing
the Chinese remainder theorem with the Newton itera-
tion and the reduction part has the same procedure as
of addition.

In the case when the input divisors of addition or
doubling do not satisfy above conditions, the algorithm
needs other procedures. Hence the first stage of the
Harley algorithm classifies the input divisors according
the weights of the divisors and the points contained
in the divisors, then selects corresponding procedures.
See [3, 6, 10] for details of these classification and pro-
cedures.

4 A most-frequent-case algorithm

This section shows a generalization of the Harley al-
gorithm to hyperelliptic curve (3) over finite fields of
arbitrary characteristics. Especially, we show a classi-
fication of the input divisor classes and procedures for
the most frequent case.

Hereafter, elements of IF, and polynomials in X over
[y are denoted by small and capital letters respectively.

4.1 Classification for input divisor classes

The generalized Harley algorithm also follows the
strategy of the Harley algorithm to apply different pro-
cedures for different cases of input divisors.

In addition Dg = D]_ +D2, Dz = (Uz,V,) € jC(IFq),
we also make use of the facts that when the size of
F, is large enough, the weights of both D;, D, almost
always equal two, and both of Dy, D2 do not contain
the same point or the points opposite to each other. In
other words, D1, D, satisfy degUs = degUs = 2 and
ged(Ur,Us) = 1. We call such case “the most frequent
case of addition” in this paper.

In the first stage of addition, one computes the resul-
tant of U; and Uz then uses it to classify input divisors.
e.g. in the most frequent case of addition, the resultant
is not equal to zero. In 4.2, we will show a procedure
for the most frequent case of addition.

In doubling Dy = 2D4, D; = (U;, Vi) € Jc(F,), once
again if the size of I, is large enough, the weight of
D; almost always equals two. Besides, D; does not
contain ramification points except Ps. In other words,
D, satisfies degU; = 2 and ged(Uy,2V; + H) = 1. We
call such case “the most frequent case of doubling” in
this paper.

Similar to the procedures of addition, one computes
the resultant of U; and 2V; + H at first. The case that
the resultant is not equal to zero is the most frequent
case of doubling. In 4.3, we will show a procedure for
the most frequent case of doubling.

In both addition and doubling, when the input divi-
sors do not satisfy the conditions of the most frequent
case, the output divisor has to be computed by the pro-
cedures other than 4.2 and 4.3. These procedures can
be easily obtained from the procedures shown in [3, 6]
with minor modifications according to 4.2 and 4.3.

4.2 A most-frequent-case addition algorithm

Here, we show a procedure for the most frequent case
of addition Dg = D]_ + DQ,DZ' = (Uz', V;) € jc(]Fq)

Firstly, in the composition part, one computes a
semi-reduced divisor D = (U, V) such that D ~ —Dj3
and U = U 1U,. V is obtained as

V =8U, + W, (22)
S= (Vo =V))U; ! mod Us,degS <1 (23)

by applying the Chinese remainder theorem to

V = Vi mod U, (24)
V = V2 mod Us. (25)

Next, in the first step of the reduction part, one
computes the reduced divisor D§ = (U3, V4) such that
Di ~ D. Uj is computed as

F—HV —V?
Uézsfz—g v

(26)
according to [7, 10]. In fact, when s; = 0 one needs
another procedure which is omitted here. Vi is the
unique polynomial satisfied (16) for U} which can be
obtained by
Vs = S(Us — Ut) — s1(ug —u)Us + Vi (27)
from
Vi =V mod U} (28)

and (22).
Finally, the output divisor D3 = —Dj is obtained as

D3 = (Us, V3) = (Ui, haUy — V3 — H) (29)

using (18).

The details of the procedure are optimized following
[6, 7, 10]. e.g. rather than computing (22) explicitly,
computation of Uj is based on a formula obtained by
substituting (22) into (26). Furthermore, the Karat-
suba multiplication is used to reduce the computation
cost further. Moreover, similar to [6, 7], two inversions



required in the procedures can be replaced with one
inversion and four multiplications using Montgomery’s
multiple inversion technique[11l]. Consequently, we
obtain a most-frequent-case addition algorithm which
takes 39A + I + 28 M + S. Table 1 in Appendix shows
further details of the proposed addition algorithm and
the costs of each steps in the algorithm.

4.3 A most-frequent-case doubling algorithm

Here, we show a procedure for the most frequent case
of doubling D2 = 2D1,Di = (Uz, V;) (S jC(IFq)

Firstly, in the composition part, one computes the
semi-reduced divisor D = (U, V) such that D ~ —D,
and U = U2. V is obtained as

V=8U,+W, (30)
S = %W(ZW Jr—H)’1 mod Us,deg S <1
1 (31)
by applying the Newton iteration to
V =Vi mod U;. (32)

In the reduction part, one follows the same steps as
for addition. i.e., the output divisor Dy = (Ua, V) is
obtained as

_ _y2
Uy = SIQW (33)
Vo = Us(h2 — s1(u21 —u11)) — S(U2 —U1) = V1 — H.
(34)

The details of the doubling procedure are also op-
timized following [6, 7, 10]. Consequently, we obtain
a most-frequent-case doubling algorithm which takes
59A + 1+ 38M.

Table 2 in Appendix shows further details of the pro-
posed doubling algorithm and the costs of each steps
in the algorithm.

5 Conclusion

This paper showed a generalized Harley algorithm
for genus two hyperelliptic curves over finite fields of ar-
bitrary characteristics. The proposed algorithm takes
39A + I+ 28M + S for an addition and 594 + I + 38 M
for a doubling, where A, I, M, S denote the costs of an
addition, an inversion, a multiplication and a squaring
in finite field respectively.
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Appendix

Input | Weight two reduced divisors Dy = (U1, V1), D2 = (Uz, V2) such that ged(Ur,U2) =1
C:Y?>+ H(X)Y = F(X)

Output | A weight two reduced divisor D3 = (Us, V3)

W1 ¢ U11 — U31; WO < U0 — U30; W2 < S1W1; W3 < SoWo;
wq + (81 + s0)(w1 + wo) — w2 — ws;
V31 — us1(h2 + wz) — w4 —v11 — h1; v30 U30(h2 + wz) — w3 — vio0 — ho;

Step Procedure Cost
1 Compute the resultant r of U; and Us. 4A+3M+ S
W1 4 UL1 — U21; Wo <— U21W1 + U20 — U105 T — (U20 — U10)Wo + uzow?;
2 If » = 0 then call the other procedure. —
3 Compute I = w1 X +wo = r(U1)~" mod Us. —
4 Compute T =1 X + to = I(Vz — V1) mod Us. 8A+5M
ta « (v21 — v11)wi; to « (v20 — v10)Wo;
t1 < (v21 — v11 + v20 — v10) (w1 + wo) — t2 — to;
t1 < t1 — taua1; to < to — tauqo;
5 If t1 = 0 then call the sub-procedure. —
6 Compute S = 51X + so. (Multiple inversion technique) I+6M
wo (’r‘tl)il; W1 4= WoT; w2  Wot1; w3 < wir; 81 ¢ waly; So ¢ walo.
7 Compute Us = X2 4+ uz1 X + uzo = s72((SU1 + V1)? + H(SU1 + V1) — F) /U1 Us. 14A+7M
ug1 < u11 — u21 + w3(2s0 + hay — w3);
uzo + wa(ws(so(so + h2) + u21 — fa + wi1) — w21(2s0 + h2) + 2v11 + h1 + 2s0u11)
+u10 — w20 + w21 (u21 — w11);
8 Compute V3 = w31 X + v30. 134+ 5M

Total 39A+T1+28M + S
Table 1: A most-frequent-case Addition algorithm
Input | A weight two reduced divisor D1 = (Ui, Vi) such that ged(U1,2Vi + H) =1
C:Y?+ HX)Y = F(X)
Output | A weight two reduced divisor Dy = (U, V2)
Step Procedure Cost
1 Compute the resultant r of Uy and 2V; + H. 8A+TM
hs < hzuH; w2 hQUm; w1 ¢ hs — 2v11 — h1; wo — u1wi + 2v10 — w2 + ho;
r < (ho + 2v10)wo — u10(h2(2v10 + ho — w2) + w1 (2v11 + h1))
2 If r = 0 then call the other procedure. —
3 Compute I = —X + wo = r(2V4 + H)™' mod Us. —
4 Compute T = t:1 X +to = I(F — HV4 — Vi) /U1 mod Un. 25A + 14M
81 ¢ havir; so ¢ havio; w2 < w11 (3u1r — 2f4); ws < vi1(h1 + vi1); wa < 2u10 fa;
ws < w11 (6uo + 281 — 2f3 + w11 (3f4 — 4u11)) + fo — so — w3 — wa;
We < w2 — S1 — 2u10 + f3; t1 ¢ wiws + woWs; Ws — U10We;
we < fa — w3 — wa — S0 + u11(s1 — f3 + 4u1o + w11 (f2 — u11)); to + Wows — Wi wWs;
5 If t1 = 0 then call the sub-procedure. —
6 Compute S = 51X + sg. (Multiple inversion technique) I+6M
wo (’l"t1)71; W1 4 Wor; w2 — wot1; w3 < wir; S1  wat1; So + wato;
7 Compute Us = X2 4+ u21 X + us0 = 87 °((SUL + V1)? + H(SU1 + Vi) — F)/UZ. 11A +4M
u21 < w3(2s0 + ha — ws); u20  wa(ws(2u11 — fa + so(so + h2)) — hs + 2v11 + h1);
8 Compute Vo = v21 X + v90. 13A+5M
W1 <= U1 — U21; Wo $— U0 — U20; W2 $— S1W1; W3 < SoWo;
w4 4 (81 + s0) (w1 + wo) — w2 — ws;
va1 < u21(h2 + w2) — wa — vi1 — h1; v2o  u20(h2 + w2) — ws — vio — ho;
Total 59A + 1+ 38M

Table 2: A most-frequent-case Doubling algorithm




