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Abstract— The Frobenius expansion is known as an efficient method to implement addition of the
Mordel-Weil group of elliptic curves and has been successfully applied to fast elliptic curve cryptosys-
tems. However since the elliptic curves on which the Frobenius expansion can be used are defined over
extension fields Fqn/Fq, so that the #E(Fqn) cannot be a prime number. Thus only a subgroup of
the Mordell-Weil group can be used in the cryptosystems, which means certain loss of computational
efficiency.

This paper firstly shows a method to apply the Frobenius expansion to quadratic twists of elliptic
curves. Such twist curves can be constructed to be of prime order then applied to cryptosystems. The
existence of prime order curves is also confirmed experimantally.
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1 Introduction

Let Fq be a finite field with char(Fq) �= 2, 3. An
elliptic curve E over Fq is defined as

E : Y 2 = X3 + aX + b (1)

with the point at infinity P∞, where a, b ∈ Fq, 4a3 +
27b2 �= 0.
The q-th power Frobenius map πq of E is defined as

πq :E −→E

(x, y) �−→(xq, yq).

Notice that the P∞ is mapped into itself by πq. The
Frobenius map πq acts non–trivially for all
P ∈ E(Fq)\E(Fq).
The characteristic polynomial χq ∈ Z[X] of πq is

given by

χq(X) = X2 − tX + q, |t| ≤ 2
√

q, (2)

which satisfies

(π2
q − tπq + q)P = P∞ (3)

for all the P ∈ E(Fq).
In an cryptosystem based on the Mordell-Weil group

of the elliptic curve (1) over E(Fqn), encryption and de-
cryption times is dominated by computation of scalar
multiplications kP for P ∈ E(Fqn), k ∈ Z. To re-
duce the processing time, the following expansion of
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kP , based on (3), has been used to compute the scalar
multiplications

kP =
∑

i≥0

ciπ
i
qP. (4)

We will call this expansion the Frobenius expansion.
Computation of the right hand side of (4) turned out to
be faster than computation of kP by any other meth-
ods in many cases. Recently, various researches have
been reported on fast elliptic curve cryptosystems over
E(Fqn), n > 1 using the Frobenius expansion [1][2][3].
In a cryptosystem using the Frobenius expansion, the

order of the base point P ∈ E(Fqn), #〈P 〉 should be
a prime number from security consideration. However,
since E(Fqn) ⊇ E(Fq), there is no any point P of a
prime order #〈P 〉 which can generate the Mordell-Weil
group or 〈P 〉 = E(Fqn) for n > 1.
Such a property of these curves is undesirable to be

used in cryptosystems, in the sense that (i) a Mordell-
Weil group E(Fqn) of unnecessarily larger size has to
be used, (ii) the search for random points in 〈P 〉 will
be slower.
As to the (i), we know that among general curves

E/Fqn there are curves whose Fqn–rational pointsE(Fqn)
are prime orders. Also there exists base points P ∈
E(Fqn) such that 〈P 〉 = E(Fqn) and

#〈P 〉 = #E(Fqn) ≈ qn.

In the case of elliptic curve cryptosystems using the
Frobenius expansion on E/Fq, however, one can at
most expect

#E(Fqn) = #E(Fq)#〈P 〉
even if the base point P ∈ E(Fqn) was chosen as with
the maximal order. In this case, the order of 〈P 〉 can



at most be

#〈P 〉 ≈ qn−1

since #E(Fq) ≈ q. Therefore, in order to obtain the
same security, the cryptosystems using the Frobenius
expansion have to use curves E/Fqn+1 . In the other
words, extra cost for the field operation is necessary
comparing with using curves of prime orders defined
over Fqn ,
If one can find a way to use prime order curves and

at the same time the Frobenius expansion can be ap-
plied, then more efficient cryptosystems can be con-
structed on these curves. This paper firstly shows that
the quadratic twists of curves can be used with such
properties. Then construction of Frobenius map on
these curves is presented. Moreover, distribution of or-
ders of the twist curves is investigated by experiments.

2 Quadratic twists of elliptic curves

This section defines the quadratic twist of an elliptic
curve E and discusses its properties.
Let c ∈ Fqn be a non–quadratic residue over Fqn . A

quadratic twist Et of E over Fqn is defined as

Et : Y 2 = X3 + ac2X + bc3. (5)

Close relations are known between E and Et. e.g.,
although

Et(Fqn) � E(Fqn),

however,

Et(Fqn) ∼= E(Fqn).

In particular,

Et(Fq2n) ∼= E(Fq2n) ∼= E(Fqn)× Et(Fqn). (6)

Moreover the qn–th power Frobenius map of Et is −πn
q

and

End(Et) ∼= End(E) ∼= O ⊂ K,

where O is an order of the CM field K of E.
Therefore there exists a map in End(Et) whose char-

acteristic polynomial is the same as that of πq i.e. χq(X).
If this map can be efficiently computed, one can obtain
efficient cryptosystems on Et(Fqn) using its Frobnius
expansion.

3 Construction of the Frobenius map of
Et

This section shows how to define and compute the
Frobenius map πt

q of Et.
According to (6), defining πt

q as

πt
q : Et(Fq2n) ∼−→

σ1
E(Fq2n) −→

πq

E(Fq2n) ∼−→
σ2

Et(Fq2n)

(7)

then both the πt
q and the πq have the same character-

istic polynomial χq(X) obviously. Moreover it is well
known that σi in (7) are defined as follows [4]:

σ1 : Et(Fq2n) −→E(Fq2n)

(x, y) �−→(c−1x, c−3/2y),

σ2 : Et(Fq2n) −→E(Fq2n)

(x, y) �−→(cx, c3/2y).

Therefore,

πt
qP = (c1−qxq, c3(1−q)/2yq) (8)

for all P = (x, y) ∈ Et(Fq2n).
Now we denote the restriction of πt

q to Et(Fqn) with
the same symbol πt

q. Then we have πt
qP ∈ Et(Fqn) for

all P ∈ Et(Fqn) because 2 | 1−q hence c3(1−q)/2 ∈ Fqn .
Therefore the πt

q is well–defined as a nondegenerated
map on Et(Fqn) as follows:

πt
q : Et(Fqn) −→Et(Fqn)

(x, y) �−→(c1−qxq, c3(1−q)/2yq).

P∞ is again fixed by the πt
q.

For P ∈ Et(Fqn), kP can be computed by

kP =
∑

i≥0

ci(πt
q)

iP , i ∈ Z>0 (9)

with the same ci given in (4).
The (πt

q)
iP can be computed as

(πt
q)

iP = (c1−qi

xqi

, c3(1−qi)/2yqi

).

Although computation of πt
q costs two more multi-

plications than πq, the scalar multiplication using (9)
can be faster than previous methods, if Et(Fqn) has a
prime order.

4 Distribution of #Et(Fqn)

The previous section showed that πt
q can be effi-

ciently computed on Et(Fqn). Therefore if Et(Fqn) has
a prime order, a faster elliptic curve cryptosystem can
be constructed on it.
This section discusses whether Et(Fqn) could have a

prime order or not in either cases of n �= 2m or n = 2m,
where m is a positive integer.
Since it is necessary for the distribution of the orders

to have enough randomness to apply Et to the cryp-
tosystems, this section also calculates the distribution
of Et(Fqn) by experiments.

4.1 In the case of n �= 2m, m ≥ 0

Let n = 2enr such that 2 � nr, Et0 be a quadratic
twist of E over Fq2e . For such a Et0 ,

Et0(Fqn) � E(Fqn),
Et0(Fq2n) ∼= E(Fq2n) ∼= E(Fq2n)× Et0(Fq2n).



These relations and (5) induce

Et0(Fqn) ∼= Et(Fqn).

Therefore

#Et0(Fq2e ) | #Et(Fqn)

and the Et(Fqn) cannot have a prime order.

4.2 In the case of n = 2m, m ≥ 0

The Et(Fqn) could have a prime order in this case.
The following example shows a prime order Et(Fqn).

Example
Let p = 220 − 3 and n = 8. An elliptic curve E over

Fp is defined as

E : Y 2 = X3 + 440307X + 451281.

The characteristic polynomial of the p–th power Frobe-
nius map πp of E is given as

χp(X) = X2 − 475X + p.

Now we define a twist Et of E over Fpn as

Et : Y 2 = X3 + 440307c2X + 451281c3,

where c ∈ Fpn is a non–quadratic residue. ThenEt(Fpn)
has a 160bit prime order

#Et(Fpn) = 146146818654806866052591765
9233378417576832630689.

4.3 Computation of order distribution

We computed #Et(Fpn) of all E/Fp for each p =
997, 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049 and n =
1, 2, 4, 8, 16, 32.
The Figure 1–6 show the distributions of #Et(Fpn).

The distribution is normalized and expressed in the
number of curves versus deviation of their orders from
the center of the Hasse range. Specifically, the number
of curves is a sum of curves over different characteristic
fields but whose orders have almost the same deviation
from the center of the Hasse range.
The distribution of #Et(Fp), which is the same as

that of #E(Fp), follows the Sato conjecture by the Fig-
ure 1. It seems that the distributions of #Et(Fpn), n >
2 have enough randomness, so that we can obtain enough
prime order curves over such extension fields. In con-
clusion, enough many secure cryptosystems can be con-
structed on Et(Fpn), n > 2 .

5 Conclusion

This paper showed that the Frobenius expansion can
be efficiently applied to the quadratic twists of elliptic
curves and also enough many prime order twist curves
can be constructed. These results suggest that cryp-
tosystems using the twists and their Frobenius maps
can be faster than the systems by the previous meth-
ods. However the proposed method costs two more
multiplications over Fqn than the previous method. Thus
further research, especially implementations, is neces-
sary to approve the practical efficiency of the proposed
method.

Figure 1: The distribution of #Et(Fp)

Figure 2: The distribution of #Et(Fp2)

Figure 3: The distribution of #Et(Fp4)



Figure 4: The distribution of #Et(Fp8)

Figure 5: Distribution of #Et(Fp16)

Figure 6: Distribution of #Et(Fp32)
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